22 research outputs found

    Shocked Quartz in Polymict Impact Breccia from the Upper Cretaceous Yallalie Impact Structure in Western Australia

    Get PDF
    Yallalie is a ~12 km diameter circular structure located ~200 km north of Perth, Australia. Previous studies have proposed that the buried structure is a complex impact crater based on geophysical data. Allochthonous breccia exposed near the structure has previously been interpreted as proximal impact ejecta; however, no diagnostic indicators of shock metamorphism have been found. Here we report multiple (27) shocked quartz grains containing planar fractures (PFs) and planar deformation features (PDFs) in the breccia. The PFs occur in up to five sets per grain, while the PDFs occur in up to four sets per grain. Universal stage measurements of all 27 shocked quartz grains confirms that the planar microstructures occur in known crystallographic orientations in quartz corresponding to shock compression from 5 to 20 GPa. Proximity to the buried structure (~4 km) and occurrence of shocked quartz indicates that the breccia represents either primary or reworked ejecta. Ejecta distribution simulated using iSALE hydrocode predicts the same distribution of shock levels at the site as those found in the breccia, which supports a primary ejecta interpretation, although local reworking cannot be excluded. The Yallalie impact event is stratigraphically constrained to have occurred in the interval from 89.8 to 83.6 Ma based on the occurrence of Coniacian clasts in the breccia and undisturbed overlying Santonian to Campanian sedimentary rocks. Yallalie is thus the first confirmed Upper Cretaceous impact structure in Australia

    Extraordinary rocks from the peak ring of the Chicxulub impact crater: P-wave velocity, density, and porosity measurements from IODP/ICDP Expedition 364

    Get PDF
    Joint International Ocean Discovery Program and International Continental Scientific Drilling Program Expedition 364 drilled into the peak ring of the Chicxulub impact crater. We present P-wave velocity, density, and porosity measurements from Hole M0077A that reveal unusual physical properties of the peak-ring rocks. Across the boundary between post-impact sedimentary rock and suevite (impact melt-bearing breccia) we measure a sharp decrease in velocity and density, and an increase in porosity. Velocity, density, and porosity values for the suevite are 2900–3700 m/s, 2.06–2.37 g/cm3, and 20–35%, respectively. The thin (25 m) impact melt rock unit below the suevite has velocity measurements of 3650–4350 m/s, density measurements of 2.26–2.37 g/cm3, and porosity measurements of 19–22%. We associate the low velocity, low density, and high porosity of suevite and impact melt rock with rapid emplacement, hydrothermal alteration products, and observations of pore space, vugs, and vesicles. The uplifted granitic peak ring materials have values of 4000–4200 m/s, 2.39–2.44 g/cm3, and 8–13% for velocity, density, and porosity, respectively; these values differ significantly from typical unaltered granite which has higher velocity and density, and lower porosity. The majority of Hole M0077A peak-ring velocity, density, and porosity measurements indicate considerable rock damage, and are consistent with numerical model predictions for peak-ring formation where the lithologies present within the peak ring represent some of the most shocked and damaged rocks in an impact basin. We integrate our results with previous seismic datasets to map the suevite near the borehole. We map suevite below the Paleogene sedimentary rock in the annular trough, on the peak ring, and in the central basin, implying that, post impact, suevite covered the entire floor of the impact basin. Suevite thickness is 100–165 m on the top of the peak ring but 200 m in the central basin, suggesting that suevite flowed downslope from the collapsing central uplift during and after peak-ring formation, accumulating preferentially within the central basin

    The formation of peak rings in large impact craters

    Get PDF
    Large impacts provide a mechanism for resurfacing planets through mixing near-surface rocks with deeper material. Central peaks are formed from the dynamic uplift of rocks during crater formation. As crater size increases, central peaks transition to peak rings. Without samples, debate surrounds the mechanics of peak-ring formation and their depth of origin. Chicxulub is the only known impact structure on Earth with an unequivocal peak ring, but it is buried and only accessible through drilling. Expedition 364 sampled the Chicxulub peak ring, which we found was formed from uplifted, fractured, shocked, felsic basement rocks. The peak-ring rocks are cross-cut by dikes and shear zones and have an unusually low density and seismic velocity. Large impacts therefore generate vertical fluxes and increase porosity in planetary crust

    High frame rate emission spectroscopy for ablation tests in plasma wind tunnel

    Get PDF
    This article describes a novel high frame rate emission spectroscopy setup developed for measurements in high enthalpy flow fields. The optical setup and the associated hardware arrangements are described in detail followed by test case data to demonstrate the capability of recording spectral images at 1 kHz frame rate. The new system is based on a classical Czerny-Turner spectrograph but with a particular setup for high frame rate detection using a Generation II intensifier coupled with a high-speed camera. The high frame rate spectral images acquired enable, for the first time, investigation of the spatial distribution and temporal tracking and evolution of molten droplets of an ablating sample. In this paper, an example is shown from ablating meteorite samples tested in a high enthalpy plasma flow field corresponding to a flight scenario at an altitude of 80 km. This new instrumental configuration allows emission spectroscopic analysis of transient phenomena simulated in the high enthalpy ground test facilities with kHz resolution. The particular feature of this system is the ability to measure very faint spectral lines at high temporal and spatial resolution

    The Variability of Ruthenium in Chromite from Chassignite and Olivine-Phyric Shergottite Meteorites: New Insights into the Behavior of PGE and Sulfur in Martian Magmatic Systems

    No full text
    The Martian meteorites comprise mantle-derived mafic to ultramafic rocks that formed in shallow intrusions and/or lava flows. This study reports the first in situ platinum-group element data on chromite and ulvöspinel from a series of dunitic chassignites and olivine-phyric shergottites, determined using laser-ablation ICP-MS. As recent studies have shown that Ru has strongly contrasting affinities for coexisting sulfide and spinel phases, the precise in situ analysis of this element in spinel can provide important insights into the sulfide saturation history of Martian mantle-derived melts. The new data reveal distinctive differences between the two meteorite groups. Chromite from the chassignites Northwest Africa 2737 (NWA 2737) and Chassigny contained detectable concentrations of Ru (up to ~160 ppb Ru) in solid solution, whereas chromite and ulvöspinel from the olivine-phyric shergottites Yamato-980459 (Y-980459), Tissint, and Dhofar 019 displayed Ru concentrations consistently below detection limit ( \u3c 42 ppb). The relatively elevated Ru signatures of chromite from the chassignites suggest a Ru-rich (~1-4 ppb) parental melt for this meteorite group, which presumably did not experience segregation of immiscible sulfide liquids over the interval of mantle melting, melt ascent, and chromite crystallization. The relatively Ru-depleted signature of chromite and ulvöspinel from the olivine-phyric shergottites may be the consequence of relatively lower Ru contents ( \u3c 1 ppb) in the parental melts, and/or the presence of sulfides during the crystallization of the spinel phases. The results of this study illustrate the significance of platinum-group element in situ analysis on spinel phases to decipher the sulfide saturation history of magmatic systems

    Search for a meteoritic component within the impact melt rocks of the Chicxulub impact structure peak ring, Mexico

    No full text
    Constraining the degree of preservation of a meteoritic signature within an impact structure provides vital insights in the complex pathways and processes that occur during and after an impact cratering event, providing information on the fate of the projectile. The IODP-ICDP Expedition 364 drilling recovered a ∌829 m continuous core (M0077A) of impactites and basement rocks within the ∌200-km diameter Chicxulub impact structure peak ring. No highly siderophile element (HSE) data have been reported for any of the impact melt rocks of this drill core to date. Previous work has shown that most Chicxulub impactites contain less than 0.1% of a chondritic component. Only few impact melt rock samples in previous drill cores recovered from the Chicxulub might contain such a signal. Therefore, we analyzed impact melt rock and suevite samples, as well as pre-impact lithologies of the Chicxulub peak ring, with a focus on the HSE concentrations and Re–Os isotopic compositions. Similar to the concentrations of the other major and trace elements, those of the moderately siderophile elements (Cr, Co, Ni) of impact melt rock samples primarily reflect mixing between a mafic (dolerite) and felsic (granite) components, with the incorporation of carbonate material in the upper impact melt rock unit (from 715.60 to 747.02 meters below seafloor). The HSE concentrations of the impact melt rocks and suevites are generally low (<39 ppt Ir, <96 ppt Os, <149 ppt Pt), comparable to the values of the average upper continental crust, yet three impact melt rock samples exhibit an enrichment in Os (125–410 ppt) and two of them also in Ir (250–324 ppt) by one order of magnitude relative to the other investigated samples. The 187Os/188Os ratios of the impact melt rocks are highly variable, ranging from 0.18 to 2.09, probably reflecting heterogenous target rock contributions to the impact melt rocks. The significant amount of mafic dolerite (mainly ∌20–60% and up to 80–90%), which is less radiogenic (187Os/188Os ratio of 0.17), within the impact melt rocks makes an unambiguous identification of an extraterrestrial admixture challenging. Granite samples have unusually low 187Os/188Os ratios (0.16 on average), while impact melt rocks and suevites broadly follow a mixing trend between upper continental crust and chondritic/mantle material. Only one of the investigated samples of the upper impact melt rock unit could also be interpreted in terms of a highly diluted (∌0.01–0.05%) meteoritic component. Importantly, the impact melt rocks and pre-impact lithologies were affected by post-impact hydrothermal alteration processes, probably remobilizing Re and Os. The mafic contribution, explaining the least radiogenic 187Os/188Os values, is rather likely. The low amount of meteoritic material preserved within impactites of the Chicxulub impact structure may result from a combination of the assumed steeply-inclined trajectory of the Chicxulub impactor (enhanced vaporization, and incorporation of projectile material within the expansion plume), the impact velocity, and the volatile-rich target lithologies.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore