64 research outputs found
Erratum to: Do RANKL inhibitors (denosumab) affect inflammation and immunity?
Receptor activator of nuclear factor kappa B ligand (RANKL) and its natural antagonist, osteoprotegerin (OPG), are, respectively, an indispensable factor and a potent inhibitor for osteoclast differentiation, activity, and survival. The development of a human monoclonal antibody to RANKL, denosumab, constitutes a novel approach to prevent fragility fractures in osteoporosis, skeletal complications of malignancy, and potentially bone erosions in rheumatoid arthritis (RA). In addition to being expressed by osteoblasts, RANKL is abundantly produced by activated T cells, and synoviocytes in RA, whereas its receptor, RANK, is also expressed by monocytes/macrophages and dendritic cells. However, in preclinical and clinical studies of RA—including patients with some degree of immunosuppression—RANKL inhibitors did not significantly alter inflammatory processes. RANKL, RANK, and OPG deficiency in murine models highlights the important role of this pathway in the development and maturation of the immune system in rodents, including functions of T and/or B cells, whereas OPG overexpression in mice and rats seems innocuous with regard to immunity. In contrast, loss-of-function mutations in humans have more limited effects on immune cells. In clinical studies, the overall rate of infections, cancer, and death was similar with denosumab and placebo. Nevertheless, the risk of severe infections and cancer in some specific tissues remains to be carefully scrutinize
Differential cell reaction upon Toll-like receptor 4 and 9 activation in human alveolar and lung interstitial macrophages
BACKGROUND: Investigations on pulmonary macrophages (MΦ) mostly focus on alveolar MΦ (AM) as a well-defined cell population. Characteristics of MΦ in the interstitium, referred to as lung interstitial MΦ (IM), are rather ill-defined. In this study we therefore aimed to elucidate differences between AM and IM obtained from human lung tissue. METHODS: Human AM and IM were isolated from human non-tumor lung tissue from patients undergoing lung resection. Cell morphology was visualized using either light, electron or confocal microscopy. Phagocytic activity was analyzed by flow cytometry as well as confocal microscopy. Surface marker expression was measured by flow cytometry. Toll-like receptor (TLR) expression patterns as well as cytokine expression upon TLR4 or TLR9 stimulation were assessed by real time RT-PCR and cytokine protein production was measured using a fluorescent bead-based immunoassay. RESULTS: IM were found to be smaller and morphologically more heterogeneous than AM, whereas phagocytic activity was similar in both cell types. HLA-DR expression was markedly higher in IM compared to AM. Although analysis of TLR expression profiles revealed no differences between the two cell populations, AM and IM clearly varied in cell reaction upon activation. Both MΦ populations were markedly activated by LPS as well as DNA isolated from attenuated mycobacterial strains (M. bovis H37Ra and BCG). Whereas AM expressed higher amounts of inflammatory cytokines upon activation, IM were more efficient in producing immunoregulatory cytokines, such as IL10, IL1ra, and IL6.CONCLUSION: AM appear to be more effective as a non-specific first line of defence against inhaled pathogens, whereas IM show a more pronounced regulatory function. These dissimilarities should be taken into consideration in future studies on the role of human lung MΦ in the inflammatory response
Endogenous IL-15 in autocrine fashion enhances rheumatoid arthritis fibroblast-like synoviocytes proliferation and resistance to apoptosis
No abstract available
Endogenous IL-15 in autocrine fashion enhances rheumatoid arthritis fibroblast-like synoviocytes proliferation and resistance to apoptosis
No abstract available
Pharmacological inhibition of interleukin-15 prevents colitis and associated bone loss in IL-10 knockout mice
Bone loss secondary to inflammatory bowel diseases (IBD) is largely explained by activated T cells producing cytokines that trigger osteoclastogenesis and accelerate bone resorptionwhile inhibiting bone formation. In IBD, elevated expression of interleukin (IL)-15, a T cell growth factor, plays a central role in T cell activation, pro-inflammatory cytokine production and the development of colitis. We previously reported that IL-15 enhances RANKL-induced osteoclastogenesis and that an IL-15 antagonist, CRB-15, prevents weight and bone loss in a mousemodel of dextran sulfate sodium-induced colitis.We hypothesized that inhibition of IL-15 signalingmight prevent bone loss in IL-10 deficient (IL10−/−) mice, that develop spontaneous bowel inflammation associatedwith osteopeniawhen they are no longer raised under germ-free conditions.Mice received anIL-15 antagonist (CRB-15, 5 μg/day, n=5) or IgG2a (5 μg/day, n=4) fromweek 10 to 14 of age. The severity of colitis was assessed by histology and bowel cytokine gene expression by real time PCR. Bone mass and architecturewere evaluated by ex vivo DXA on femur and micro-computed tomography on femur and vertebra. Bodyweight gainwas similar in the two groups. After 4 weeks, colonwas 29% shorter in CRB-15 treatedmice (p<0.006), a sign of reduced inflammation. Histological analysis indicated a transmural infiltration of inflammatory cells, lymphoepithelial lesions and increased size of villi (histological score=4/6) in IgG2a treated mice, whereas colon from CRB-15 treated mice exhibited mild infiltration of inflammatory cells of the lamina propria, no mucosal damages and a minimal increased size of villi (histological score=1.6/6). Levels of TNFα, IL-17 and IL-6 mRNA in the colon were significantly reduced in CRB-15 treated mice (p<0.04 vs IgG2), indicating a decrease in colon inflammation. CRB-15 improved femur BMD (+10.6% vs IgG2a, p<0.002), vertebral trabecular bone volume fraction (BV/TV, +19.7% vs IgG2a, p<0.05) and thickness (+11.6% vs IgG2a, p<0.02). A modest but not significant increase in trabecular BV/TV was observed at the distal femur. Cortical thicknesswas also higher at themidshaft femur in CRB-15 treatedmice (+8.3% vs IgG2a, p<0.02). In conclusion, we confirm and extend our results about the effects of CRB-15 in colitis. Antagonizing IL-15 may exert favorable effects on intestinal inflammation and prevent bone loss and microarchitecture alterations induced by colitis. This article is part of a Special Issue entitled ECTS 2011. Disclosure of interest: B. Brounais-Le Royer Grant / Research Support from Novartis Consumer Health Foundation, S. Ferrari-Lacraz: none declared, D. Velin: none declared, X. Zheng: none declared, S. Ferrari: none declared, D. Pierroz: none declared
- …