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CD40 in coronary artery disease: a matter of macrophages?
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Abstract Coronary artery disease (CAD), also known as

ischemic heart disease (IHD), is the leading cause of

mortality in the western world, with developing countries

showing a similar trend. With the increased understanding

of the role of the immune system and inflammation in

coronary artery disease, it was shown that macrophages

play a major role in this disease. Costimulatory molecules

are important regulators of inflammation, and especially,

the CD40L-CD40 axis is of importance in the pathogenesis

of cardiovascular disease. Although it was shown that

CD40 can mediate macrophage function, its exact role in

macrophage biology has not gained much attention in

cardiovascular disease. Therefore, the goal of this review is

to give an overview on the role of macrophage-specific

CD40 in cardiovascular disease, with a focus on coronary

artery disease. We will discuss the function of CD40 on the

macrophage and its (proposed) role in the reduction of

atherosclerosis, the reduction of neointima formation, and

the stimulation of arteriogenesis.

Keywords CD40 � Macrophage � Atherosclerosis �
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Introduction

The TNF receptor superfamily member 5 (TNFRSF5), or

CD40, is a costimulatory molecule that was originally

discovered on B-cells and other antigen presenting cells

(APCs) [110]. CD40 is activated by its ligand,

CD40L(TNFSF5) [89]. CD40 is expressed on a multitude

of immune cells and non-immune cells, with functions

varying per cell type [21, 41]. In B-cells, CD40 ligation

induces T-cell-dependent immunoglobulin class switching

[42], memory B-cell development [48], and germinal

center formation [71, 79]. In dendritic cells, CD40 ligation

induces more effective antigen presentation [17, 115, 124],

enhances T-cell stimulatory capacity, and induces pro-

duction of several inflammatory cytokines and chemokines

[18]. It was discovered recently that T-cells also express

CD40 but not much is known about its function. T-cell

CD40 seems to mediate CD8? T-cell memory [12], can

contribute to T-cell activation [107], and is associated with

autoimmune disease [142, 143]. On monocytes, CD40

stimulation induces the production of inflammatory

cytokines and chemokines [75], and matrix metallopro-

teinases [38] and, similar to CD40 on dendritic cells,

induces more potent antigen presentation [17, 115, 124].

The effects of CD40 on macrophages will be described in

detail below.

In the 1990s, it was discovered that blocking CD40L

limits atherosclerosis [91, 93, 128] and induces a

stable plaque phenotype in mice [90]. Thereafter, it was

shown that knocking out CD40, the receptor for CD40L,
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induced a similar phenotype [92]. Our laboratories have

shown the importance of CD40 on hematopoietic cells, and

macrophages in particular. We showed that a deficiency of

hematopoietic CD40 decreased atherosclerosis and induced

plaque stabilization in CD40 knock-out mice [92]. Mac-

rophages of these mice were of the regulatory M2 pheno-

type. We also showed that the antiarteriogenic protein

galectin-2 shifts proarteriogenic, CD40-negative macro-

phages into proinflammatory, and CD40-positive macro-

phages, resulting in compromised arteriogenesis [158]. We

identified galectin-2 to be highly expressed in monocytes

of human chronic total coronary occlusion (CTO) patients

with a poor collateral network, compared with CTO

patients with a well-developed collateral network [145].

These findings, in combination with the large overlap

between functions of CD40 and macrophages in cardio-

vascular disease, suggest an important role of macrophage-

specific CD40 in cardiovascular disease. Specific inhibition

of macrophage CD40 might act as a ‘‘double-edged sword’’

by inhibiting atherosclerosis and stimulating arteriogenesis,

resulting in a reduced ischemic burden without interfering

in adaptive immunity.

Macrophages in cardiovascular disease

Monocytes and macrophages largely contribute to the

pathophysiology of cardiovascular diseases, for example,

in atherosclerosis [4, 37, 57, 62, 120, 164] and arterio-

genesis [55, 58]. Both monocytes and macrophages can, at

the extremes, be divided in a proinflammatory phenotype

and a healing phenotype. The interplay and balance

between these two phenotypes have shown to be of

importance in, for example, atherosclerosis [25, 29, 130]

and myocardial infarction [37, 154]. In murine monocytes,

the proinflammatory phenotype is defined as Ly6C high,

while the healing phenotype is defined as Ly6C low [159].

Ly6C high monocytosis is regarded as one of the first steps

in the inflammatory response in atherosclerosis, as Ly6C

high monocytes activate endothelium, infiltrate into the

intima, and become lesional macrophages. Furthermore, in

atherosclerosis models, such as the apolipoprotein (ApoE)

deficient mouse, hypercholesterolemia is associated with

Ly6C high monocytosis. Inhibition of the Ly6C high

monocytosis abolishes atherosclerosis in hypercholes-

terolemic mice [26, 87, 136]. In humans proinflammatory,

or classical, monocytes are generally defined as CD14??/

CD16-, while the healing, or non-classical, phenotype is

defined as CD14?/CD16?? [166]. An intermediate,

CD14??/CD16? population can also be observed in

humans [99, 153]. In concurrence with the animal model

described above, in humans, CD14??/CD16- monocy-

tosis is associated with atherosclerosis and is an

independent predictor of cardiovascular events [61, 123].

In macrophages, the phenotypic spectrum is defined by the

proinflammatory M1 macrophages that are induced by

T-helper 1 cytokines, and by M2 macrophages that are

induced by Th-2 cytokines. The M2 macrophages can be

subclassified into wound healing (M2a), regulatory (M2b,

M2c), and M2d subtypes [24, 25, 104]. In addition,

atherosclerosis-associated macrophage phenotypes have

been discovered, i.e., M(Hb), Mox, Mhem, and M4 mac-

rophages [24, 25]. Consequently, a large number of mac-

rophage phenotypic markers have evokes (reviewed by

Mosser et al. [104]. and Colin et al. [25]). While CD40 is

not mentioned in these reviews, it has proved to be a dis-

tinctive marker for M1 macrophages [148, 149]. In

experimental atherosclerosis models, the M1 and the pla-

que specific M4 subtypes are proinflammatory and

proatherogenic and seem to cause a vulnerable plaque

phenotype. The M2 phenotype and the plaque specific

M(hb) and Mhem are anti-inflammatory and antiathero-

genic. The role of the Mox phenotype is currently not well

understood [25, 29]. The role of the M2 subtypes has not

been defined further yet. In arteriogenesis in animal mod-

els, the shift toward M2 phenotype (no data on subtypes)

improves arteriogenesis and reduces ischemia [51, 138,

140]. In humans, M1 macrophages are associated with

plaque instability, both in ischemic stroke and in myocar-

dial infarction [23, 81, 134]. A word of caution should be

added, regarding the dichotomous distinction between M1

and M2 macrophages, as these terms are increasingly dis-

couraged by immunologists. In vivo, a wide range of M1-

and M2-like macrophages can be distinguished. While

older studies use the M1/M2 nomenclature, it is now

encouraged to use multiple markers to describe the mac-

rophage phenotype [47]. However, this review will still use

the M1/M2 nomenclature, as the studies described all use

this nomenclature.

CD40 in clinical disease

Cardiovascular diseases share many traits of their patho-

physiology with other autoimmune diseases, such as

rheumatoid arthritis [68], systemic sclerosis [16], systemic

lupus erythematosus [3], or inflammatory bowel disease

[49, 72, 139]. CD40 and CD40L were shown to have a

pivotal role in these diseases [27, 33, 96, 114]. Interest-

ingly, higher sCD40L levels in patients with Crohn’s dis-

ease even predicted thicker intima and media in their

carotid arteries [72]. In cardiovascular diseases, blocking

CD40 signaling has never been tested in clinical trials.

Anta- and agonistic CD40 antibodies, however, have been

tested in other chronic inflammatory diseases and cancer.

Below is a brief overview of these trials and the
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effectiveness and side effects of blocking or activating

CD40 signaling.

In 1999, the first clinical trials started using an anti-

CD40L antibody as a treatment for systemic lupus ery-

thematosus, lupus glomerulonephritis, and immune

thrombocytopenic purpura. The anti-CD40L antibody

treatment showed an improvement in the number of pla-

telets in immune thrombocytopenic purpura but did not

improve performance scores in systemic lupus erythe-

matosus [11, 28, 69, 78]. Blocking CD40L was effective in

lupus glomerulonephritis, where it markedly reduced

hematuria. However, this trial was ended prematurely

because of the high incidence of thromboembolic events

[11]. These thromboembolic events are most likely due to

the fact that CD40L is also present on platelets, as inhi-

bition of CD40L causes platelet aggregates to become

unstable and to embolize [5]. Since the anti-CD40L anti-

body treatment was deemed unsafe, attention was shifted

toward the CD40 molecule.

Dacetuzumab is a humanized anti-CD40 agonistic mAb,

which triggers CD40-mediated signaling in various cell

types [53]. It has been tested in several hematologic

malignancies. In a phase I single agent study of patients

with relapsed B-cell non-Hodgkin’s lymphoma, six of 50

patients had objective response, and an additional thirteen

had documented stable disease [2]. For relapsed chronic

lymphocytic leukemia, a phase I single agent study was

performed. In this study, none of the patients achieved an

objective response; however, five out of twelve patients

showed stable disease [43]. In refectory multiple myeloma,

single agent therapy with dacetuzumab showed no objec-

tive response in a phase I study [60]. In refractory diffuse

large B-cell lymphoma, a phase I study initially showed

promising results of dacetuzumab as a single agent, with

objective responses in four of 46 patients and 13 cases of

stable disease [30]. However, a follow-up study showed no

benefit of dacetuzumab on top of the existing last-resort

chemotherapy [36]. In these studies, about two-thirds of

patient’s experienced adverse events classified as grade

1–2 out of 4 among them were fatigue, headache, pyrexia,

chills, nausea, anemia, thrombocytopenia, and hypoten-

sion. Non-infectious eye disorders, including conjunctivitis

and ocular hyperemia, were also seen. A few grade 3

adverse events were seen, including malignant neoplasm

progression, severe anemia, pleural effusion, thrombocy-

topenia, and severe infections. Some grade 4 events were

seen, including aseptic meningitis and hyperviscosity

syndrome [2, 30, 36, 43, 60].

Lucatumumab (or HCD122) is a fully humanized

antagonistic antibody against CD40 and exerts its primary

function through opsonization followed by antibody-de-

pendent cell-mediated cytotoxicity (ADCC) [53]. It has

been tested in a single-agent phase I study of relapsed

chronic lymphocytic leukemia [15]. Here, one of 26

patients had a partial response and sixteen had a

stable disease. For relapsed or refractory multiple mye-

loma, a single agent phase I study was performed in 28

patients. Twelve patients had a stable disease after treat-

ment and one patient maintained a partial response for up

to 8 months [8]. A phase I/IIa study was performed for

advanced non-Hodgkin and Hodgkin lymphoma in 111

patients. In this study, the overall response rate by com-

puted tomography among patients was 33 % [35]. Overall,

most adverse events observed in these studies were mild to

moderate, including neutropenia, thrombocytopenia, fati-

gue, headache, chills, fever, and nausea, cytokine release

syndrome symptoms (mostly grades 1–2, sometimes grades

3–4), non-infectious ocular inflammation, and elevated

hepatic enzymes. A few serious adverse events were seen,

including dyspnea, pyrexia elevated liver enzymes and

infections. One death due to severe sepsis was reported [8,

15, 35].

An antagonistic anti-CD40 antibody, ch5D12, has been

tested in 18 patients with mild to moderate Crohn’s dis-

ease. Based on Crohn’s Disease Activity Index (CDAI)

scores, the overall response rate was 70 %, remission was

achieved in 22 % of patients, and ch5D12 was well toler-

ated. Described side effects were mild, including headache,

muscle aches, or joint pains [70].

While the side effects are described as overall mild to

modest in these papers, this is in comparison with the

conventional therapy for cancer or Crohn’s disease. How-

ever, in chronic use for ischemic heart diseases, the side

effects would be more damaging than beneficial. Since

blocking CD40 or CD40L systemically is not suitable for

the treatment of ischemic heart diseases because of pre-

dicted severe side effects, such as immune suppression,

targeting CD40(L) downstream targets and selected CD40

effector cells may be a preferred strategy.

CD40 and macrophages

The findings described above, in combination with the

large overlap between functions of CD40 and macrophages

in cardiovascular disease suggest an important role of

macrophage-specific CD40 in cardiovascular disease.

Unfortunately, there is not much data available on signal-

ing pathways elicited by CD40 in macrophages or macro-

phage subtypes. Since CD40 is expressed mostly on M1

macrophages [148, 149], it can be assumed that CD40

signaling is predominantly active in M1 macrophages.

Ligation of CD40 on macrophages induces a more potent

antigen presentation, with the upregulation of MHC class

II, costimulatory molecules CD80, CD86, and CD40 itself

[135]. Furthermore, ligation of CD40 stimulates the
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production of proinflammatory cytokines and chemokines

by macrophages, including TNFa, IL-1 (a and b), IL-6, IL-
8, IL-12, CCL 2, 3, 4, and 5 [135]. CD40 also induces

several other molecules, such as matrix metalloproteinases,

nitric oxide, and possibly iNOS (NOS2) and COX-2. In

addition, ligation of CD40 on near-apoptotic cells rescues

them from apoptosis [118, 135].

However, since these studies are all performed in vitro,

caution is needed when interpreting these interactions as the

response CD40 induces in macrophages seems highly

dependent on the environment. In vitro, the presence of IL-4

or IL-10 has been shown to induce quite different results in

downstream CD40 signaling in macrophages. IL-4 blocks

CD40 mediated rescue from apoptosis, while IL-10 does not

[117]. IL-10 significantly inhibitedCD40-induced activation

of the ERK, p38MAPK, andNF-jB pathways, whereas IL-4

only affects the ERK pathway [66]. CD40-CD40L interac-

tion induces ROS production, the synthesis of ICAM1, and

activation of stress response proteins (p38 MAP kinase and

HSP27) only in the presence of hypoxia, indicating that

CD40(L) mediates the induction of oxidative stress in these

cells [20]. When comparing a model of an atherosclerotic

plaque in mice [90] to a model of lung fibrosis in mice [1],

opposite reactions to the same stimuli are seen due to the

influence of tissue environment on CD40 signaling. In both

models, inhibition of CD40-CD40L signaling results in a

downregulation of inflammation. However, in atheroscle-

rosis, anti-CD40L antibody treatment resulted in the upreg-

ulation of TGF-beta onmacrophages, whereas in irradiation-

induced lung injury, it caused downregulation of TGF-beta.

Environmental differences like these are important in

tumor progression [111, 113], but there is also indirect

evidence that these environmental differences play a role in

other diseases. For example, the lack of apoptosis of

macrophages inside the atheromatous plaque is thought to

aggravate atherosclerosis [88, 146]. It was shown that IL-4

blocked CD40-mediated rescue from apoptosis, while IL-

10 does not [117]. Though never proven, one could

imagine that the plaque environment alters CD40 signaling,

and thus affects atherosclerosis.

TNF-receptor-associated factors

As CD40 does not have the ability to initiate its own

intrinsic activity but requires adaptor molecules, it is

important to note the functions of these molecules, with a

focus on their functions in macrophages. The TNF-recep-

tor-associated factor (TRAF)-family of proteins can bind to

the cytoplasmic tail of CD40 and subsequently recruit

kinases and other effector proteins [127]. All TRAF-family

members, with the exception of TRAF5, are ubiquitously

expressed, suggesting that they may perform significant

physiological and cellular functions in multiple organs and

cell types. The TRAF-family members can be recruited by

a variety of receptors, among which CD40. CD40 can, after

activation by CD40L, recruit several different TRAF-

family members. Depending on the TRAF-molecule acti-

vated, different transduction cascades are induced. These

transduction cascades activated by the different TRAFs can

have opposite effects. Unfortunately, what regulates the

recruitment of a certain TRAF-family member to CD40

remains unclear. Of the seven known TRAF-family mem-

bers, CD40 can bind five (TRAFs 1, 2, 3, 5, and 6) [119,

155]. CD40 contains three binding sites, one for the TRAF

1, 2, and 3, one for TRAF6 [119] and a secondary TRAF2

binding site. There is some conflicting evidence whether or

not TRAF 5 can bind directly to the binding site of TRAF

1, 2, and 3 [67] or that it indirectly binds to it via an

heterodimeric complex with TRAF3 [119, 161]. Below is a

brief description of the different functions of the TRAF

proteins when CD40 ligation occurs. A graphical overview

of the main pathways involved in CD40-TRAF signaling is

shown in Fig. 1. As TRAF4 and TRAF7 do not bind to

CD40, they will not be discussed.

TRAF1

TRAF1, like all TRAFs, can be recruited to a variety of

TNRF receptor members, including CD40, TNFR I/II, and

RANK [64]. In general, it is thought that TRAF1 has a role as

a negative regulator of signaling in TNF receptors. This is

displayed in TRAF1 knock-out models, where T-cells

respond in a hyper proliferative manner in response to

stimulation [82, 162]. However, the possible role as negative

regulator has not yet been researched inmacrophages. On the

CD40 protein, TRAF1 shares a binding site with TRAF 2 and

3 and binds only weakly to this site [119]. No functional data

are known about CD40-TRAF1 signaling on macrophages.

However, ligation of CD40 on T- and B-cells that were

deficient in TRAF1 did not show any differences compared

with normal T- and B-cells [82, 162]. However, in cell cul-

tures of dendritic orHeLAcells, TRAF1 negatively regulates

CD40-TRAF2 signaling [6, 40]. Of interest, this review is a

study by Missiou et al., which showed that TRAF1 defi-

ciency reduces atherosclerosis by limiting the adhesion of

monocytes to the vessel wall, suggesting that TRAF1 plays a

role in monocyte adhesion [97]. However, since TRAF1

interacts with more receptors that just CD40, it is not known

if this inhibition of adhesion was solely due to the lack of

CD40-TRAF1 signaling.

TRAF2

The general functions of TRAF2 are very broad. TRAF2 is

required in T- and B-cell signaling and inflammatory
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responses, but it is also required for organogenesis and cell

survival [7]. TRAF2 activates the canonical NF-jB sig-

naling pathways [103] and also seems to be a negative

regulator of the non-canonical NF-jB signaling pathways,

as TRAF2 deficiency results in hyperreactivity of this

pathway [7]. On the CD40 protein, TRAF2 shares its

binding site with TRAF1 and 3. It binds strongly and

directly to this binding site [119]. TRAF2 seems to require

an intact lipid raft to function, as CD40-TRAF2 signaling

on dendritic cells is largely absent when disturbing the lipid

raft [147]. On the macrophage, some evidence points

toward the requirement of TRAF2 expression and subse-

quent degradation after stimulation with CD40L for the

differentiation of monocytes into fully functional macro-

phages [34], suggesting that TRAF2 has a low concentra-

tion in macrophages. A defective TRAF2, 3, and 5 binding

site on CD40 in macrophages does not completely impair

the inflammatory response to CD40L; however, it does

result in a lower TNF production (ca. 40 % of total pro-

duction). Furthermore, CD40-TRAF2/3/5 deficiency leads

to an inability to activate the IKK complex. However, this

defect has no consequences for NF-kB activation, IL-6

production, or ERK1/2 activation [65, 106].

TRAF3

The function of TRAF3 has long been a mystery, as

researching it proved difficult. TRAF3 knockout mice have

a relatively normal gestation period; however, soon after

birth, the mice die prematurely within two weeks of age

with symptoms, including stunted growth and progressive

hypoglycemia, hypercortisolemia, and leukopenia [54].

Relatively, recently, it was discovered that TRAF3 is a

powerful negative regulator of the non-canonical NF-jB
signaling pathways and a modulator of viral immunity [54].

On the CD40 molecule, as mentioned before, TRAF3

Fig. 1 Overview of the main

pathways involved in CD40-

TRAF signaling. a TRAF 2/3/5

induces about 40 % of TNF

production; however, they do

not influence (canonical) NF-

jB. Therefore, an alternative

pathway must be present. Based

on data from B-cells, this is

most likely the non-canonical

NF-jB pathway. b TRAF 2/3/5

is required for the IKK-

complex; however, they do not

influence (canonical) NF-jB.
Therefore, an alternative

pathway is likely present.

c Much of the downstream

targets of CD40-TRAF

signaling still need to be

uncovered. Of the majority of

molecules produces by

macrophages in response to

CD40 signaling, no TRAF

molecule or further pathway has

been determined
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shares its binding site with TRAF1 and 2. It binds strongly

and directly to this binding site [119]. TRAF3, like TRAF2,

also seems to require an intact lipid raft to function;

however, the effect of disturbing the lipid raft is not as

large as with TRAF2 [147]. On macrophages, TRAF3 is

suggested to only be present in low concentrations.

Monocytes showed a strongly immunoreactivity for

TRAF3, but macrophages typically contained little or no

TRAF3 immunoreactivity [77].

TRAF5

TRAF5 is highly similar to TRAF2, in both structure and

function. However, whereas TRAF2 is expressed ubiqui-

tously, TRAF5 expression is only found at significant

levels in lung, thymus, spleen, and kidney and at lower

levels in the brain and liver [7]. A sole TRAF5 deficiency

has interesting consequences. TRAF5 deficiency acceler-

ates atherogenesis in a mice model by promoting the roll-

ing and adhesion of inflammatory cells and macrophage

LDL uptake, which might contribute to foam cell forma-

tion [98], suggesting an anti-inflammatory, antiatherogenic

function of TRAF5. It is under discussion whether TRAF5

directly [67] or indirectly binds to CD40 via hetero-oli-

gomers with TRAF3 [119, 161].

TRAF6

Generation of TRAF6 deficient mice revealed that TRAF6

plays crucial roles in several important processes and that

other TRAFs cannot compensate for loss of TRAF6. These

functions are extremely broad, including osteoclastogene-

sis, lymph node organogenesis, thymic selection, and

central tolerance. It is essential for IL-1 signaling and

required for most TLR-receptor signaling [63, 151]. Fur-

thermore, TRAF6 mediates antiviral responses triggered by

cytosolic viral DNA and RNA in a way that differs from

that associated with TLR signaling [76]. On the CD40

protein, TRAF6 has a separate binding site, to which it

weakly binds [119]. Upon binding, TRAF6 is required for

the maturation of dendritic cells, the affinity maturation of

immunoglobulins, and optimal function of CD8? T-cell

homeostasis and memory development [63, 151]. In

monocytes and macrophages, TRAF6 is responsible for the

most downstream actions of CD40. It is required for TNF

production, IL6 production, NF-jB activation (through p62

[129]), ERK activity, IKK activation, PKR phosphoryla-

tion [106], and upregulation of NOS2 (in cooperation with

TNF) [118]. Defective CD40-TRAF6 signaling has some

interesting results in monocytes and macrophages. This

deficiency induces the polarization of macrophages toward

an anti-inflammatory regulatory M2 signature, induces a

reduced blood count of Ly6C high monocytes, and results

in impaired recruitment of Ly6C high monocytes to the

arterial wall. This defective signaling also results in a

marked reduction of atherosclerosis in a mouse model [22,

92]. Recently, a small molecule CD40-TRAF6 inhibitor

was developed. This compound showed significant survival

benefits in sepsis and peritonitis in mice, with little side

effects [163]. Furthermore, in a diet-induced obesity

model, it was shown that the small molecule inhibitor

reduced insulin resistance and, most important for this

review, reduced the accumulation of immune cells to the

adipose tissue and by skewing of the immune response

toward a more anti-inflammatory profile [22, 144].

Atherosclerosis

In the pathophysiology of coronary artery disease, macro-

phage-specific CD40 plays a role in four major processes

of the disease, atherosclerosis, neointima formation,

angiogenesis, and arteriogenesis. Below the role of CD40

and macrophage-specific CD40 in these four processes will

be described.

In atherosclerosis, atheromatous plaques develop due to

the accumulation of apolipoprotein B containing lipopro-

teins in the inner lining of large- and medium-sized arteries

[101]. When the coronary vasculature is affected, this can

lead to ischemic heart disease. Ischemic heart disease is an

important determinant of morbidity and mortality in

developed countries, and is soon to attain this status

worldwide [105]. As the atheromatous plaques develop,

they grow larger and can restrict the vessel lumen resulting

in symptoms, such as angina pectoris or claudicato inter-

mittens, depending on the arterial bed affected. When

atherosclerosis progresses, there is an increase in the

incidence of the acute and most damaging complications,

such as myocardial infarctions or ischemic cerebrovascular

events. These acute complications of atherosclerosis are

caused through either the rupture of a vulnerable plaque or

the erosion of the endothelial layer [85, 108].

In the 1990s, it was discovered that inhibition of CD40

signaling by blocking CD40L limits the evolution of

established atherosclerosis in mice [91, 93, 128]. In con-

currence with these findings, it was shown that both early

and delayed anti-CD40L antibody treatment induced a

stable plaque phenotype [90]. Furthermore, it was shown

that platelet CD40L mediates thrombotic and inflammatory

processes in atherosclerosis [86]. Moreover, Leroyer et al.

showed that microparticles isolated from human

atherosclerotic lesions express CD40L, stimulate endothe-

lial cell proliferation after CD4 ligation, and promote

in vivo angiogenesis. The majority of these microparticles

(93 %) were of macrophage origin, and therefore,

microparticles released by macrophages could represent a
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major determinant of intraplaque neovascularization and,

thus, plaque vulnerability [83]. In humans, CD40L predicts

cardiovascular events. In unstable coronary artery disease,

expression of CD40L on platelets and serum soluble

CD40L levels are higher in patients compared with

stable coronary disease or peripheral arterial disease [10,

45]. Furthermore, some studies show that sCD40L con-

centrations can predict clinical outcome in patients with

acute coronary syndrome. However, other studies report no

correlation between sCD40L levels and clinical outcome

[112]. CD40L antibodies were tested clinically for other

autoimmune diseases (see ‘‘CD40 in clinical disease’’).

However, trials were ended because of the high incidence

of thromboembolic events [11]. These were most likely

caused by to the fact that CD40L is also present on pla-

telets, and inhibition of CD40L causes platelet aggregates

to become unstable [5].

Thus, attention was shifted toward the CD40 protein.

The involvement of CD40 signaling in atherosclerosis has

been firmly established. In a mouse model that lacked both

ApoE and CD40-TRAF6 signaling, atherosclerosis was

abolished. Furthermore, the defective CD40 signaling

induced a clinically favorable plaque phenotype, contain-

ing a high amount of fibrosis and a few inflammatory cells

[92]. Furthermore, it was also shown that macrophage foam

cell formation is highly dependent on CD40 in a study by

Yuan et al. Soluble sCD40L significantly increased lipid

deposition and foam cell formation. Disruption of the

ligation between CD40 and CD40L either by small inter-

fering RNA or by a blocking anti-CD40 antibody inhibited

foam cell formation in response to sCD40L [160].More-

over, a meta-analysis of the rs1883832 CD40 SNP has

shown a correlation between the C allele of this SNP and

acute coronary syndrome in a Chinese population [157].

There is convincing evidence, suggesting a large role of

CD40 on macrophages in atherosclerosis. The mouse

knock-out model described above that lacked both ApoE

and CD40-TRAF6 signaling displayed a reduced blood

count of Ly6C high monocytes, an impaired recruitment of

Ly6C high monocytes to the arterial wall, and polarization

of macrophages toward an anti-inflammatory regulatory

M2 signature. The reduction in atherosclerosis and the

macrophage phenotype shift, both induced by defective

CD40-TRAF6 signaling, is suggestive for a large role of

CD40 on macrophages in atherosclerosis. In patients,

CD40 on monocytes and macrophages is a marker for

atherosclerosis, as shown by Bruemmer et al., who dis-

covered that there is a direct association of CD40 expres-

sion on macrophages and smooth muscle cells and intimal

thickness, suggesting a role in early plaque development

[13]. In addition, CD40 on macrophages is associated with

critical limb ischemia [14] and coronary artery calcification

[137] in patients. Furthermore, patients with moderate

hypercholesterolemia showed a significant increase in

CD40 on monocytes (together with CD154 and P-selectin

on platelets) compared with healthy subjects. A short-term

therapy with an HMG-CoA reductase inhibitor signifi-

cantly downregulated CD40 on monocytes [46, 150].

Unfortunately, a model detailing the effect on atheroscle-

rosis by a specific deletion of CD40 on macrophages has

not been published yet. On a side note, the difference

described between males and females in the prevalence in

cardiovascular diseases [141] might be in part due to a

difference in CD40 on human macrophages. Androgens

increase the expression of CD40 (among other

atherosclerosis related genes) in male but not female

macrophages, with functional consequences [109].

Neointima formation

Essentially, all damage to the vascular wall results in an

increase in intimal thickness, or neointima formation. This

process is associated with luminal narrowing, causing

major complications in humans after arterial intervention

(e.g., balloon angioplasty and stenting). In neointima for-

mation, vascular smooth muscle cells proliferate within the

intima. This process has been the main target for treatment

in the form of drug eluting stents. However, the immuno-

logical process driving smooth muscle cell proliferation

has not been fully uncovered, though initial cytokine

release from platelets and macrophages, and further

aggravation through macrophage produced cytokines has

been suggested [19, 74]. A role for CD8? T-cells has also

been shown, where the absence of CD8? cells increases

neointima formation. Conversely, the absence of CD4?

T-cells reduces neointima formation [31, 165].

In ApoE deficient mice in which denudation injury to

the carotid arteries was induced, it was shown that blocking

CD40L significantly reduced the exaggerated neointima

formation, with a[50 % reduction in neointimal size and a

56 % reduction in neointimal macrophage content [84].

Moreover, it was shown that blocking CD40L-CD40 sig-

naling but not CD40L-Mac-1 reduces neointima formation

[152]. In other studies, it was shown that neointima for-

mation after both carotid artery ligation and femoral artery

denudation injury was reduced in CD40-deficient mice

compared with wild-type mice. Furthermore, a significant

decrease in the recruitment of neutrophils (at 3 and 7 days)

and macrophages (at 7 and 21 days) into injured artery was

shown [59, 132]. Some contradictory data exist as Remskar

et al. showed that after carotid artery injury in CD40L

knockout mice, the intimal thickening was increased 3-fold

compared with the thickening in wild-type mice [122].

Furthermore, it was shown by Donners et al. that inhibition

of CD40L signaling did not reduce neointima formation in
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mice. CD40-knock-out mice, however, did have reduced

neointima formation in the same study, suggesting that

CD40, but perhaps not CD40L, plays a large role in

neointima formation [32].

Like in atherosclerosis, TRAF6 seems to be the key

regulator of CD40 signaling in neointima formation and

arterial remodeling. Donners et al. showed that in mice

deficient for CD40-TRAF6 signaling, neointima volume

was reduced by 83 %. Also like atherosclerosis, they

showed an impaired recruitment of macrophages to the

vessel wall [32]. Another study demonstrated that in rabbits

where carotid artery damage was induced by balloon

inflation, CD40-TRAF6 signaling deficiency inhibited

intimal cell replication, macrophage infiltration, and pro-

teoglycan accumulation [100]. The role of CD40-TRAF6

signaling on vascular wall cells was also shown to be of

importance, cooperating with kinase TAK1 [131, 133].

These data suggest a possible strategy for preventing

neointima formation and, thus, improve outcome after

vascular intervention by interfering in the CD40, most

likely CD40-TRAF6, signaling of macrophages. However,

no indication of its effectiveness compared with drug

eluting stents, the current clinical practice, has been made.

Angiogenesis

Angiogenesis, a process seen in both health and disease,

refers to the formation of new capillaries. The process of

angiogenesis starts when several proangiogenic factors,

such as vascular endothelial growth factor (VEGF) or basic

fibroblast growth factor (bFGF), are excreted as a reaction

to ischemia. These factors act by activating endothelial

cells, causing them to proliferate and migrate into the

perivascular space and eventually resulting in the forma-

tion of a new capillary lumen.

While angiogenesis is required for wound healing,

increased angiogenesis is also associated with increased

tumor growth and tumor metastasis [39, 80, 116]. This

duality can also be in cardiovascular disease. Here,

angiogenesis relieves ischemia by sprouting new capillar-

ies [156] but also aggravates atherosclerosis by increasing

plaque vascularization [102]. The functions of bFGF and

VEGF are well known and often studied; however, other

molecules, like CD40, seem to play crucial roles as well.

As described above, VEGF is a potent initiator of

angiogenesis. Several studies have described a regulatory

role for monocyte or macrophage CD40 in VEGF pro-

duction. A study by Melter et al. shows that the treatment

of HUVECs and monocytes with soluble CD40 ligand

(sCD40L) results in an induction of VEGF and VEGF-

mRNA. In an in vitro endothelial cell growth assay,

CD40L induced marked growth of HUVECs. Neutralizing

anti-VEGF antibody completely inhibited the effect of

sCD40L on HUVEC growth. The study also showed a

model of SCID mice bearing human skin transplants.

sCD40L was injected into the human skin grafts and a

marked induction in VEGF expression was found after

7 days in all sCD40L-treated skins compared with controls

[95]. A similar study, performed for 6 weeks, showed

similar results. In a model of SCID mice bearing human

skin transplants, it was found that the injection of CD40L-

expressing cells, but not control cells, resulted in the

in vivo expression of several angiogenesis factors (in-

cluding VEGF and fibroblast growth factor) and a marked

angiogenesis reaction [121]. Yet, another study showed

that MCP-1 and CD40L stimulation of macrophages had a

synergistic effect on COX-2 expression and subsequent

VEGF production in gastric cancer [44]. All these studies

clearly suggest that CD40 ligation is a potent stimulator

angiogenesis and that the proangiogenic effect of CD40 is

VEGF dependent.

While not many studies describing angiogenesis and

CD40 on macrophages have been done, from the few that

have been done a clear picture emerges, macrophage CD40

ligation induces and controls VEGF and other angiogenic

factors, and seems to be an important factor in

angiogenesis.

Arteriogenesis

Arteriogenesis refers to the widening of existing collateral

arteries, as to increase blood flow.

These existing collateral arteries are present at birth and

can be considered as alternative ways blood can flow from

one point to another. Thus, when a vessel becomes partially

obstructed, collateral vessels are somewhat able to com-

pensate for the loss of blood flow. Arteriogenesis causes

these collateral vessels to widen as to increase to blood

flow to its original state.

The exact mechanisms of arteriogenesis have not yet

been unraveled. Arteriogenesis is initiated by an increase in

shear stress, caused by an increased blood flow in the

collateral artery after partial obstruction of the main artery.

The shear stress causes endothelial cells to become acti-

vated, and expresses several chemo-attractants and adhe-

sion molecules [56]. These cause monocytes to adhere,

migrate, and change into macrophages. These macrophages

start to produce several cytokines and growth factors,

which cause smooth muscle cells (SMCs) to proliferate,

facilitating vascular luminal expansion and, thereby, an

increased collateral perfusion.

It has been shown that having increased arteriogenesis,

and thus, a better collateral network is highly beneficial.

Patients with a better collateral network have smaller
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lesions after myocardial infarction, less ventricular aneur-

isms, a relatively better left ventricular ejection fraction

[50], less future cardiovascular events [9], and an improved

survival [52, 94].

High expression of several immune modulating proin-

flammatory agents, such as Interferon-beta and Galectin-2,

were shown to correlate with poor collateralization in

humans and to directly inhibit this process in murine

models [126, 145, 158]. It has been shown that the balance

between M1 and M2 macrophages is of importance in

arteriogenesis. For example, in a mouse model by Takeda

et al., skewing macrophages toward the M2-phenotype

resulted in an increase in arteriogenesis and a marked

decrease in ischemia as a result [23, 81, 134]. Although no

direct studies on CD40 and arteriogenesis have been done,

it has been convincingly shown that CD40 on macrophages

might be involved. In a mouse model to test the effects of

galectins on arteriogenesis, they show that galectin

administration leads to increased numbers of CD40-posi-

tive M1 macrophages and reduced numbers of M2

Fig. 2 Overview of the proposed mechanisms of CD40 (-TRAF6)

inhibition on ischemic heart diseases. a In neointima formation,

CD40(-TRAF6) inhibition reduces monocyte/macrophage recruit-

ment into the vessel wall and shifts the macrophage subset balance

toward the regulatory M2 phenotype. CD40(-TRAF6) inhibition

markedly reduces neointima formation. b In atherosclerosis, CD40(-

TRAF6) inhibition induces Ly6C low monocytosis in mice (the

human counterpart to Ly6C low is CD14?/CD16??). Furthermore,

it reduces monocyte/macrophage recruitment into the plaque, shifts

the macrophage subset balance toward the regulatory M2 phenotype

and reduces the formation of foam cells. CD40(-TRAF6) inhibition

abolishes atherosclerosis. c In arteriogenesis, CD40(-TRAF6) inhibi-

tion induces Ly6C low monocytosis in mice (the human counterpart

to Ly6C low is CD14?/CD16??). Moreover, shifts the macrophage

subset balance toward the regulatory M2 phenotype. Both these

changes have been shown to be highly beneficial in arteriogenesis
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macrophages surrounding actively remodeling collateral

arteries [158]. Suggesting that, in concurrence with the data

described above, the shift toward CD40 positive M1

macrophages slows down arteriogenesis. As described

above in the data presented about atherosclerosis, inter-

fering with CD40 macrophage signaling induces a pheno-

type shift from M1 to M2 macrophages. While not many

evidence exist yet, this might yield interesting new thera-

pies for ischemic diseases.

Discussion

Macrophages are one of the most versatile cells, and the

CD40 receptor on these cells has an equally large range of

functions. As described above, there is substantial evidence

for a large role of CD40 on macrophages in ischemic heart

disease. Evidence is presented that the activation of CD40

on macrophages accelerates atherosclerosis, accelerates

neointima formation, and attenuates arteriogenesis. The

downstream target of CD40, TRAF6, plays a major role in

these processes. An overview of the proposed mechanisms

of CD40 inhibition on ischemic heart diseases is shown in

Fig. 2.

While much research still needs to be done, the data

presented in this review suggest that interfering in CD40

signaling on the macrophage is an excellent candidate for

future cardiovascular therapies. Targeting CD40 specifi-

cally on the macrophage can be done in several ways.

Macrophage-specific CD40 can be inhibited using a bis-

pecific antibody that binds to both CD40 and a macrophage

specific receptor. However, a more practical way is to use

liposomes or HDL nanoparticles containing a CD40(-

TRAF6) inhibitor. These particles naturally target phago-

cytic cells, particularly macrophages, and thus specifically

deliver the drugs to these cells [73, 125]. Theoretically, a

patient’s ischemic burden could be drastically lowered by

reducing or inhibiting CD40 signaling on macrophages. It

could act as a ‘‘double-edged sword’’ by reducing the cause

of ischemic heart disease (atherosclerosis) and promoting

the cure (arteriogenesis). Equally important is the notion

that reducing or inhibiting CD40 signaling on macrophages

would not induce new problems, such as heightened tumor

growth (induced by increased angiogenesis) or immune-

suppression (by not interfering in the adaptive immune

system). Although significant research is still required,

CD40 on macrophages is an exciting and potent therapeutic

target. A drug targeting this interaction could possibly lead

to new therapies and improved care in cardiovascular

disease.
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