41 research outputs found

    Réorganisation de texte par des enfants de 11 ans : Effet de la longueur des textes, du niveau de compréhension des élÚves et de leur maßtrise du schéma textuel

    Get PDF
    The main goal of this work is to determine the difficulties involved in the recomposition of argumentative text by eleven years old children. The role of text length was examined in Experiment 2. The effect of the comprehension level in reading was evaluated in Experiment 3 and the mastery of prototypical schema was tested in Experiment 4. Experiment 1 was realised to collect the pro and contra arguments used in Experiments 2 to 4. The textual (text length) and individual characteristics (comprehension in reading and mastery of prototypical schema) seem to explain the difficulties faced by the eleven years old children when reorganising an argumentative text

    Ultraviolet stress delays chromosome replication in light/dark synchronized cells of the marine cyanobacterium Prochlorococcus marinus PCC9511.

    Get PDF
    International audienceBACKGROUND: The marine cyanobacterium Prochlorococcus is very abundant in warm, nutrient-poor oceanic areas. The upper mixed layer of oceans is populated by high light-adapted Prochlorococcus ecotypes, which despite their tiny genome (approximately 1.7 Mb) seem to have developed efficient strategies to cope with stressful levels of photosynthetically active and ultraviolet (UV) radiation. At a molecular level, little is known yet about how such minimalist microorganisms manage to sustain high growth rates and avoid potentially detrimental, UV-induced mutations to their DNA. To address this question, we studied the cell cycle dynamics of P. marinus PCC9511 cells grown under high fluxes of visible light in the presence or absence of UV radiation. Near natural light-dark cycles of both light sources were obtained using a custom-designed illumination system (cyclostat). Expression patterns of key DNA synthesis and repair, cell division, and clock genes were analyzed in order to decipher molecular mechanisms of adaptation to UV radiation. RESULTS: The cell cycle of P. marinus PCC9511 was strongly synchronized by the day-night cycle. The most conspicuous response of cells to UV radiation was a delay in chromosome replication, with a peak of DNA synthesis shifted about 2 h into the dark period. This delay was seemingly linked to a strong downregulation of genes governing DNA replication (dnaA) and cell division (ftsZ, sepF), whereas most genes involved in DNA repair (such as recA, phrA, uvrA, ruvC, umuC) were already activated under high visible light and their expression levels were only slightly affected by additional UV exposure. CONCLUSIONS: Prochlorococcus cells modified the timing of the S phase in response to UV exposure, therefore reducing the risk that mutations would occur during this particularly sensitive stage of the cell cycle. We identified several possible explanations for the observed timeshift. Among these, the sharp decrease in transcript levels of the dnaA gene, encoding the DNA replication initiator protein, is sufficient by itself to explain this response, since DNA synthesis starts only when the cellular concentration of DnaA reaches a critical threshold. However, the observed response likely results from a more complex combination of UV-altered biological processes

    Communication Design and Space Narratives

    Get PDF
    The experience with space is achieved through projects developed according to a design perspective. In addition to collaborating on the creation of spatial narratives by promoting the experience, the design also acts in the sense of enhancing accessibility in both the physical and cognitive domain. Wayfinding systems as well as informational technological systems are informative elements that communicate with citizens, fostering experiences of greater accessibility and the creation of social space. This paper discusses the concept of space from its social dimension, questioning on how spatial narratives, places, and paths can create individual or collective experiences within urban space through Communication Design by the use of technology

    Lattice-Boltzmann and finite-difference simulations for the permeability for three-dimensional porous media

    Full text link
    Numerical micropermeametry is performed on three dimensional porous samples having a linear size of approximately 3 mm and a resolution of 7.5 Ό\mum. One of the samples is a microtomographic image of Fontainebleau sandstone. Two of the samples are stochastic reconstructions with the same porosity, specific surface area, and two-point correlation function as the Fontainebleau sample. The fourth sample is a physical model which mimics the processes of sedimentation, compaction and diagenesis of Fontainebleau sandstone. The permeabilities of these samples are determined by numerically solving at low Reynolds numbers the appropriate Stokes equations in the pore spaces of the samples. The physical diagenesis model appears to reproduce the permeability of the real sandstone sample quite accurately, while the permeabilities of the stochastic reconstructions deviate from the latter by at least an order of magnitude. This finding confirms earlier qualitative predictions based on local porosity theory. Two numerical algorithms were used in these simulations. One is based on the lattice-Boltzmann method, and the other on conventional finite-difference techniques. The accuracy of these two methods is discussed and compared, also with experiment.Comment: to appear in: Phys.Rev.E (2002), 32 pages, Latex, 1 Figur

    The recovery of European freshwater biodiversity has come to a halt

    Get PDF
    Owing to a long history of anthropogenic pressures, freshwater ecosystems are among the most vulnerable to biodiversity loss1. Mitigation measures, including wastewater treatment and hydromorphological restoration, have aimed to improve environmental quality and foster the recovery of freshwater biodiversity2. Here, using 1,816 time series of freshwater invertebrate communities collected across 22 European countries between 1968 and 2020, we quantified temporal trends in taxonomic and functional diversity and their responses to environmental pressures and gradients. We observed overall increases in taxon richness (0.73% per year), functional richness (2.4% per year) and abundance (1.17% per year). However, these increases primarily occurred before the 2010s, and have since plateaued. Freshwater communities downstream of dams, urban areas and cropland were less likely to experience recovery. Communities at sites with faster rates of warming had fewer gains in taxon richness, functional richness and abundance. Although biodiversity gains in the 1990s and 2000s probably reflect the effectiveness of water-quality improvements and restoration projects, the decelerating trajectory in the 2010s suggests that the current measures offer diminishing returns. Given new and persistent pressures on freshwater ecosystems, including emerging pollutants, climate change and the spread of invasive species, we call for additional mitigation to revive the recovery of freshwater biodiversity.N. Kaffenberger helped with initial data compilation. Funding for authors and data collection and processing was provided by the EU Horizon 2020 project eLTER PLUS (grant agreement no. 871128); the German Federal Ministry of Education and Research (BMBF; 033W034A); the German Research Foundation (DFG FZT 118, 202548816); Czech Republic project no. P505-20-17305S; the Leibniz Competition (J45/2018, P74/2018); the Spanish Ministerio de EconomĂ­a, Industria y Competitividad—Agencia Estatal de InvestigaciĂłn and the European Regional Development Fund (MECODISPER project CTM 2017-89295-P); RamĂłn y Cajal contracts and the project funded by the Spanish Ministry of Science and Innovation (RYC2019-027446-I, RYC2020-029829-I, PID2020-115830GB-100); the Danish Environment Agency; the Norwegian Environment Agency; SOMINCOR—Lundin mining & FCT—Fundação para a CiĂȘncia e Tecnologia, Portugal; the Swedish University of Agricultural Sciences; the Swiss National Science Foundation (grant PP00P3_179089); the EU LIFE programme (DIVAQUA project, LIFE18 NAT/ES/000121); the UK Natural Environment Research Council (GLiTRS project NE/V006886/1 and NE/R016429/1 as part of the UK-SCAPE programme); the Autonomous Province of Bolzano (Italy); and the Estonian Research Council (grant no. PRG1266), Estonian National Program ‘Humanitarian and natural science collections’. The Environment Agency of England, the Scottish Environmental Protection Agency and Natural Resources Wales provided publicly available data. We acknowledge the members of the Flanders Environment Agency for providing data. This article is a contribution of the Alliance for Freshwater Life (www.allianceforfreshwaterlife.org).Peer reviewe

    Can we predict biological condition of stream ecosystems? A multi-stressors approach linking three biological indices to physico-chemistry, hydromorphology and land use

    No full text
    International audienceWe built a corpus of models capable of explaining the variability of the biological indices used in the French surveillance monitoring network and also predict the ecological status of non-monitored water bodies. Benthic macroinvertebrates, diatoms and fish indices have been used to determine the ecological status of 1100 sites of the monitoring network distributed homogeneously over national territory.The pressures taken into account to explain and predict ecological status cover three spatial scales: catchment, reach, site. The set of predictive data cover three types of pressure: land use pressure, hydromorphological pressure and physico-chemical pressure measured at catchment, reach and site scale, respectively.We showed that the parameters characterising the load of nutrients and organic matter had a predominant effect on the three biological compartments, and that land use variables played an integrating role of the different pressures acting on rivers and explained a major part of their degradation. On the contrary, we also showed that it was more difficult to characterise the role of the hydromorphological descriptors measured at the intermediate scale of the reach due to the difficulty of characterising the links between scales.The three predictive models developed demonstrated good performances to evaluate biological condition and are of great interest for managers as it permits using a set of pressure data to successively predict the status of water bodies for which biological monitoring data are unavailable
    corecore