153 research outputs found
Gobernanza y gestión del agua en el Occidente de México: la metrópoli de Guadalajara
La disponibilidad de agua como tal no es el problema más importante en la gestión del agua. La incertidumbre se sitúa en la capacidad para implementar sistemas de control, distribución y acceso al agua de una forma equitativa. Garantizar el acceso de agua potable a toda la población no es un problema financiero sino político, un asunto de prioridad .Ahora disponemos de un vasto conocimiento
y herramientas aplicables en el campo de la hidrología, biotecnología e ingeniería del agua, pero nuestro entendimiento sobre procesos socioeconómicos, culturales y políticos involucrados en la gestión del agua, sigue siendo limitado. En este libro, desde diferentes ángulos, se analizan formas de gestión del agua, escenarios de gobernanza, conflictos sociales y soluciones de carácter sociopolítico y técnico encaminadas a un manejo más sustentable del agua con posibilidades de ser apropiado socialmente. La obra tiene un fuerte componente con tintes de ecología política alrededor de los conflictos por el agua en la metrópoli de Guadalajara y la cuenca Lerma–Chapala–Santiago, sobre todo en aquellos casos donde coinciden
situaciones de deterioro ambiental y formas inadecuadas de desarrollo urbano.
En las alternativas que se analizan y proponen, se descubre una rica
diversidad que encabezan organizaciones sociales, ciudadanos, actores sociopolíticos, universidades e instituciones con diferentes niveles de impacto, vinculación y trayectorias. Se distinguen escalas y formas de gobernanza del agua a nivel de cuenca, zona metropolitana de Guadalajara, municipios y sistemas hidrográficos (microcuencas y sistemas de abastecimiento), además de revisar estilos de desarrollo urbano asociados al manejo del agua con una perspectiva de análisis y de propuesta.ITESO, A.C
Sylvatic foci of the Chagas disease vector Triatoma infestans in Chile: description of a new focus and challenges for control programs
Triatoma infestans is one of the main domestic vectors of Chagas disease. Reports of wild habitat occurrences have recently increased. In Chile, after a successful elimination campaign of T. infestans domestic infestation, a sylvatic focus was reported in bromeliads in the metropolitan region. Here, we report a new focus of sylvatic T. infestans inhabiting rock piles in the Valparaíso region in central Chile. All T. infestans captured were nymphal instars living among the stones, which were inhabited by several mammal species, along with the sylvatic triatomine vector Mepraia spinolai. We found a prevalence of infection with Trypanosoma cruzi of 36.54% in T. infestans, similar to the previous report for sylvatic specimens from bromeliads. Sylvatic populations of T. infestans should be studied at different geographic scales to elucidate their role in the maintenance of the sylvatic transmission cycle of T. cruzi and their possible role in threatening the domestic elimination of this vector. This information should be used to re-design the control programs in Chile to avoid the re-establishment of the domestic cycle
Local hydrological conditions influence tree diversity and composition across the Amazon basin
Tree diversity and composition in Amazonia are known to be strongly determined by the water supplied by precipitation. Nevertheless, within the same climatic regime, water availability is modulated by local topography and soil characteristics (hereafter referred to as local hydrological conditions), varying from saturated and poorly drained to well-drained and potentially dry areas. While these conditions may be expected to influence species distribution, the impacts of local hydrological conditions on tree diversity and composition remain poorly understood at the whole Amazon basin scale. Using a dataset of 443 1-ha non-flooded forest plots distributed across the basin, we investigate how local hydrological conditions influence 1) tree alpha diversity, 2) the community-weighted wood density mean (CWM-wd) – a proxy for hydraulic resistance and 3) tree species composition. We find that the effect of local hydrological conditions on tree diversity depends on climate, being more evident in wetter forests, where diversity increases towards locations with well-drained soils. CWM-wd increased towards better drained soils in Southern and Western Amazonia. Tree species composition changed along local soil hydrological gradients in Central-Eastern, Western and Southern Amazonia, and those changes were correlated with changes in the mean wood density of plots. Our results suggest that local hydrological gradients filter species, influencing the diversity and composition of Amazonian forests. Overall, this study shows that the effect of local hydrological conditions is pervasive, extending over wide Amazonian regions, and reinforces the importance of accounting for local topography and hydrology to better understand the likely response and resilience of forests to increased frequency of extreme climate events and rising temperatures
Recommended from our members
Dietary α‐Linolenic Acid, Marine ω‐3 Fatty Acids, and Mortality in a Population With High Fish Consumption: Findings From the PREvención con DIeta MEDiterránea (PREDIMED) Study
Background: Epidemiological evidence suggests a cardioprotective role of α‐linolenic acid (ALA), a plant‐derived ω‐3 fatty acid. It is unclear whether ALA is beneficial in a background of high marine ω‐3 fatty acids (long‐chain n‐3 polyunsaturated fatty acids) intake. In persons at high cardiovascular risk from Spain, a country in which fish consumption is customarily high, we investigated whether meeting the International Society for the Study of Fatty Acids and Lipids recommendation for dietary ALA (0.7% of total energy) at baseline was related to all‐cause and cardiovascular disease mortality. We also examined the effect of meeting the society's recommendation for long‐chain n‐3 polyunsaturated fatty acids (≥500 mg/day). Methods and Results: We longitudinally evaluated 7202 participants in the PREvención con DIeta MEDiterránea (PREDIMED) trial. Multivariable‐adjusted Cox regression models were fitted to estimate hazard ratios. ALA intake correlated to walnut consumption (r=0.94). During a 5.9‐y follow‐up, 431 deaths occurred (104 cardiovascular disease, 55 coronary heart disease, 32 sudden cardiac death, 25 stroke). The hazard ratios for meeting ALA recommendation (n=1615, 22.4%) were 0.72 (95% CI 0.56–0.92) for all‐cause mortality and 0.95 (95% CI 0.58–1.57) for fatal cardiovascular disease. The hazard ratios for meeting the recommendation for long‐chain n‐3 polyunsaturated fatty acids (n=5452, 75.7%) were 0.84 (95% CI 0.67–1.05) for all‐cause mortality, 0.61 (95% CI 0.39–0.96) for fatal cardiovascular disease, 0.54 (95% CI 0.29–0.99) for fatal coronary heart disease, and 0.49 (95% CI 0.22–1.01) for sudden cardiac death. The highest reduction in all‐cause mortality occurred in participants meeting both recommendations (hazard ratio 0.63 [95% CI 0.45–0.87]). Conclusions: In participants without prior cardiovascular disease and high fish consumption, dietary ALA, supplied mainly by walnuts and olive oil, relates inversely to all‐cause mortality, whereas protection from cardiac mortality is limited to fish‐derived long‐chain n‐3 polyunsaturated fatty acids. Clinical Trial Registration URL: http://www.Controlled-trials.com/. Unique identifier: ISRCTN35739639
Geography and ecology shape the phylogenetic composition of Amazonian tree communities
Aim: Amazonia hosts more tree species from numerous evolutionary lineages, both young and ancient, than any other biogeographic region. Previous studies have shown that tree lineages colonized multiple edaphic environments and dispersed widely across Amazonia, leading to a hypothesis, which we test, that lineages should not be strongly associated with either geographic regions or edaphic forest types.
Location: Amazonia.
Taxon: Angiosperms (Magnoliids; Monocots; Eudicots).
Methods: Data for the abundance of 5082 tree species in 1989 plots were combined with a mega-phylogeny. We applied evolutionary ordination to assess how phylogenetic composition varies across Amazonia. We used variation partitioning and Moran\u27s eigenvector maps (MEM) to test and quantify the separate and joint contributions of spatial and environmental variables to explain the phylogenetic composition of plots. We tested the indicator value of lineages for geographic regions and edaphic forest types and mapped associations onto the phylogeny.
Results: In the terra firme and várzea forest types, the phylogenetic composition varies by geographic region, but the igapó and white-sand forest types retain a unique evolutionary signature regardless of region. Overall, we find that soil chemistry, climate and topography explain 24% of the variation in phylogenetic composition, with 79% of that variation being spatially structured (R = 19% overall for combined spatial/environmental effects). The phylogenetic composition also shows substantial spatial patterns not related to the environmental variables we quantified (R = 28%). A greater number of lineages were significant indicators of geographic regions than forest types.
Main Conclusion: Numerous tree lineages, including some ancient ones (>66 Ma), show strong associations with geographic regions and edaphic forest types of Amazonia. This shows that specialization in specific edaphic environments has played a long-standing role in the evolutionary assembly of Amazonian forests. Furthermore, many lineages, even those that have dispersed across Amazonia, dominate within a specific region, likely because of phylogenetically conserved niches for environmental conditions that are prevalent within regions
Geography and ecology shape the phylogenetic composition of Amazonian tree communities
AimAmazonia hosts more tree species from numerous evolutionary lineages, both young and ancient, than any other biogeographic region. Previous studies have shown that tree lineages colonized multiple edaphic environments and dispersed widely across Amazonia, leading to a hypothesis, which we test, that lineages should not be strongly associated with either geographic regions or edaphic forest types.LocationAmazonia.TaxonAngiosperms (Magnoliids; Monocots; Eudicots).MethodsData for the abundance of 5082 tree species in 1989 plots were combined with a mega-phylogeny. We applied evolutionary ordination to assess how phylogenetic composition varies across Amazonia. We used variation partitioning and Moran's eigenvector maps (MEM) to test and quantify the separate and joint contributions of spatial and environmental variables to explain the phylogenetic composition of plots. We tested the indicator value of lineages for geographic regions and edaphic forest types and mapped associations onto the phylogeny.ResultsIn the terra firme and várzea forest types, the phylogenetic composition varies by geographic region, but the igapó and white-sand forest types retain a unique evolutionary signature regardless of region. Overall, we find that soil chemistry, climate and topography explain 24% of the variation in phylogenetic composition, with 79% of that variation being spatially structured (R2 = 19% overall for combined spatial/environmental effects). The phylogenetic composition also shows substantial spatial patterns not related to the environmental variables we quantified (R2 = 28%). A greater number of lineages were significant indicators of geographic regions than forest types.Main ConclusionNumerous tree lineages, including some ancient ones (>66 Ma), show strong associations with geographic regions and edaphic forest types of Amazonia. This shows that specialization in specific edaphic environments has played a long-standing role in the evolutionary assembly of Amazonian forests. Furthermore, many lineages, even those that have dispersed across Amazonia, dominate within a specific region, likely because of phylogenetically conserved niches for environmental conditions that are prevalent within regions
Geographic patterns of tree dispersal modes in Amazonia and their ecological correlates
Aim: To investigate the geographic patterns and ecological correlates in the geographic distribution of the most common tree dispersal modes in Amazonia (endozoochory, synzoochory, anemochory and hydrochory). We examined if the proportional abundance of these dispersal modes could be explained by the availability of dispersal agents (disperser-availability hypothesis) and/or the availability of resources for constructing zoochorous fruits (resource-availability hypothesis).
Time period: Tree-inventory plots established between 1934 and 2019.
Major taxa studied: Trees with a diameter at breast height (DBH) ≥ 9.55 cm.
Location: Amazonia, here defined as the lowland rain forests of the Amazon River basin and the Guiana Shield.
Methods: We assigned dispersal modes to a total of 5433 species and morphospecies within 1877 tree-inventory plots across terra-firme, seasonally flooded, and permanently flooded forests. We investigated geographic patterns in the proportional abundance of dispersal modes. We performed an abundance-weighted mean pairwise distance (MPD) test and fit generalized linear models (GLMs) to explain the geographic distribution of dispersal modes.
Results: Anemochory was significantly, positively associated with mean annual wind speed, and hydrochory was significantly higher in flooded forests. Dispersal modes did not consistently show significant associations with the availability of resources for constructing zoochorous fruits. A lower dissimilarity in dispersal modes, resulting from a higher dominance of endozoochory, occurred in terra-firme forests (excluding podzols) compared to flooded forests.
Main conclusions: The disperser-availability hypothesis was well supported for abiotic dispersal modes (anemochory and hydrochory). The availability of resources for constructing zoochorous fruits seems an unlikely explanation for the distribution of dispersal modes in Amazonia. The association between frugivores and the proportional abundance of zoochory requires further research, as tree recruitment not only depends on dispersal vectors but also on conditions that favour or limit seedling recruitment across forest types
Mapping density, diversity and species-richness of the Amazon tree flora
Using 2.046 botanically-inventoried tree plots across the largest tropical forest on Earth, we mapped tree species-diversity and tree species-richness at 0.1-degree resolution, and investigated drivers for diversity and richness. Using only location, stratified by forest type, as predictor, our spatial model, to the best of our knowledge, provides the most accurate map of tree diversity in Amazonia to date, explaining approximately 70% of the tree diversity and species-richness. Large soil-forest combinations determine a significant percentage of the variation in tree species-richness and tree alpha-diversity in Amazonian forest-plots. We suggest that the size and fragmentation of these systems drive their large-scale diversity patterns and hence local diversity. A model not using location but cumulative water deficit, tree density, and temperature seasonality explains 47% of the tree species-richness in the terra-firme forest in Amazonia. Over large areas across Amazonia, residuals of this relationship are small and poorly spatially structured, suggesting that much of the residual variation may be local. The Guyana Shield area has consistently negative residuals, showing that this area has lower tree species-richness than expected by our models. We provide extensive plot meta-data, including tree density, tree alpha-diversity and tree species-richness results and gridded maps at 0.1-degree resolution
- …