232 research outputs found

    Synthesis of Y1BaCu3O(x) superconducting powders by intermediate phase reactions

    Get PDF
    A procedure for synthesizing Y1Ba2Cu3O(x) by solid state reactions was developed. The method is based on the use of barium compounds, previously synthesized, as intermediate phases for the process. The reaction kinetics of this procedure were established between 860 C and 920 C. The crystal structure and the presence of second phases were studied by means of XRD. The sintering behavior and ceramic parameters were also determined. The orthorhombic type-I structure was obtained on the synthesized bodies after a cooling cycle in an air atmosphere. Superconducting transition took place at 91 K. Sintering densities higher than 95 percent D sub th were attained at temperatures below 940 C

    Short-term effectiveness of a mobile phone app for increasing physical activity and adherence to the mediterranean diet in primary care: A randomized controlled trial (EVIDENT II study)

    Get PDF
    Background: The use of mobile phone apps for improving lifestyles has become generalized in the population, although little is still known about their effectiveness in improving health. Objective: We evaluate the effect of adding an app to standard counseling on increased physical activity (PA) and adherence to the Mediterranean diet, 3 months after implementation. Methods: A randomized, multicenter clinical trial was carried out. A total of 833 participants were recruited in six primary care centers in Spain through random sampling: 415 in the app+counseling group and 418 in the counseling only group. Counseling on PA and the Mediterranean diet was given to both groups. The app+counseling participants additionally received training in the use of an app designed to promote PA and the Mediterranean diet over a 3-month period. PA was measured with the 7-day Physical Activity Recall (PAR) questionnaire and an accelerometer; adherence to the Mediterranean diet was assessed using the Mediterranean Diet Adherence Screener questionnaire. Results: Participants were predominantly female in both the app+counseling (249/415, 60.0%) and counseling only (268/418, 64.1%) groups, with a mean age of 51.4 (SD 12.1) and 52.3 (SD 12.0) years, respectively. Leisure-time moderate-to-vigorous physical activity (MVPA) by 7-day PAR increased in the app+counseling (mean 29, 95% CI 5-53 min/week; P=.02) but not in the counseling only group (mean 17.4, 95% CI ''18 to 53 min/week; P=.38). No differences in increase of activity were found between the two groups. The accelerometer recorded a decrease in PA after 3 months in both groups: MVPA mean ''55.3 (95% CI ''75.8 to ''34.9) min/week in app+counseling group and mean ''30.1 (95% CI ''51.8 to ''8.4) min/week in counseling only group. Adherence to the Mediterranean diet increased in both groups (8.4% in app+counseling and 10.4% in counseling only group), with an increase in score of 0.42 and 0.53 points, respectively (P<.001), but no difference between groups (P=.86). Conclusions: Leisure-time MVPA increased more in the app+counseling than counseling only group, although no difference was found when comparing the increase between the two groups. Counseling accompanied by printed materials appears to be effective in improving adherence to the Mediterranean diet, although the app does not increase adherence

    Association of VAV2 and VAV3 polymorphisms with cardiovascular risk factors

    Get PDF
    Hypertension, diabetes and obesity are cardiovascular risk factors closely associated to the development of renal and cardiovascular target organ damage. VAV2 and VAV3, members of the VAV family proto-oncogenes, are guanosine nucleotide exchange factors for the Rho and Rac GTPase family, which is related with cardiovascular homeostasis. We have analyzed the relationship between the presence of VAV2 rs602990 and VAV3 rs7528153 polymorphisms with cardiovascular risk factors and target organ damage (heart, vessels and kidney) in 411 subjects. Our results show that being carrier of the T allele in VAV2 rs602990 polymorphism is associated with an increased risk of obesity, reduced levels of ankle-brachial index and diastolic blood pressure and reduced retinal artery caliber. In addition, being carrier of T allele is associated with increased risk of target organ damage in males. On the other hand, being carrier of the T allele in VAV3 rs7528153 polymorphism is associated with a decreased susceptibility of developing a pathologic state composed by the presence of hypertension, diabetes, obesity or cardiovascular damage, and with an increased risk of developing altered basal glycaemia. This is the first report showing an association between VAV2 and VAV3 polymorphisms with cardiovascular risk factors and target organ damage

    The Liganding of Glycolipid Transfer Protein Is Controlled by Glycolipid Acyl Structure

    Get PDF
    Glycosphingolipids (GSLs) play major roles in cellular growth and development. Mammalian glycolipid transfer proteins (GLTPs) are potential regulators of cell processes mediated by GSLs and display a unique architecture among lipid binding/transfer proteins. The GLTP fold represents a novel membrane targeting/interaction domain among peripheral proteins. Here we report crystal structures of human GLTP bound to GSLs of diverse acyl chain length, unsaturation, and sugar composition. Structural comparisons show a highly conserved anchoring of galactosyl- and lactosyl-amide headgroups by the GLTP recognition center. By contrast, acyl chain chemical structure and occupancy of the hydrophobic tunnel dictate partitioning between sphingosine-in and newly-observed sphingosine-out ligand-binding modes. The structural insights, combined with computed interaction propensity distributions, suggest a concerted sequence of events mediated by GLTP conformational changes during GSL transfer to and/or from membranes, as well as during GSL presentation and/or transfer to other proteins

    Identification of Antifreeze Proteins and Their Functional Residues by Support Vector Machine and Genetic Algorithms based on n-Peptide Compositions

    Get PDF
    For the first time, multiple sets of n-peptide compositions from antifreeze protein (AFP) sequences of various cold-adapted fish and insects were analyzed using support vector machine and genetic algorithms. The identification of AFPs is difficult because they exist as evolutionarily divergent types, and because their sequences and structures are present in limited numbers in currently available databases. Our results reveal that it is feasible to identify the shared sequential features among the various structural types of AFPs. Moreover, we were able to identify residues involved in ice binding without requiring knowledge of the three-dimensional structures of these AFPs. This approach should be useful for genomic and proteomic studies involving cold-adapted organisms

    Towards Universal Structure-Based Prediction of Class II MHC Epitopes for Diverse Allotypes

    Get PDF
    The binding of peptide fragments of antigens to class II MHC proteins is a crucial step in initiating a helper T cell immune response. The discovery of these peptide epitopes is important for understanding the normal immune response and its misregulation in autoimmunity and allergies and also for vaccine design. In spite of their biomedical importance, the high diversity of class II MHC proteins combined with the large number of possible peptide sequences make comprehensive experimental determination of epitopes for all MHC allotypes infeasible. Computational methods can address this need by predicting epitopes for a particular MHC allotype. We present a structure-based method for predicting class II epitopes that combines molecular mechanics docking of a fully flexible peptide into the MHC binding cleft followed by binding affinity prediction using a machine learning classifier trained on interaction energy components calculated from the docking solution. Although the primary advantage of structure-based prediction methods over the commonly employed sequence-based methods is their applicability to essentially any MHC allotype, this has not yet been convincingly demonstrated. In order to test the transferability of the prediction method to different MHC proteins, we trained the scoring method on binding data for DRB1*0101 and used it to make predictions for multiple MHC allotypes with distinct peptide binding specificities including representatives from the other human class II MHC loci, HLA-DP and HLA-DQ, as well as for two murine allotypes. The results showed that the prediction method was able to achieve significant discrimination between epitope and non-epitope peptides for all MHC allotypes examined, based on AUC values in the range 0.632–0.821. We also discuss how accounting for peptide binding in multiple registers to class II MHC largely explains the systematically worse performance of prediction methods for class II MHC compared with those for class I MHC based on quantitative prediction performance estimates for peptide binding to class II MHC in a fixed register

    Amyloidogenic Regions and Interaction Surfaces Overlap in Globular Proteins Related to Conformational Diseases

    Get PDF
    Protein aggregation underlies a wide range of human disorders. The polypeptides involved in these pathologies might be intrinsically unstructured or display a defined 3D-structure. Little is known about how globular proteins aggregate into toxic assemblies under physiological conditions, where they display an initially folded conformation. Protein aggregation is, however, always initiated by the establishment of anomalous protein-protein interactions. Therefore, in the present work, we have explored the extent to which protein interaction surfaces and aggregation-prone regions overlap in globular proteins associated with conformational diseases. Computational analysis of the native complexes formed by these proteins shows that aggregation-prone regions do frequently overlap with protein interfaces. The spatial coincidence of interaction sites and aggregating regions suggests that the formation of functional complexes and the aggregation of their individual subunits might compete in the cell. Accordingly, single mutations affecting complex interface or stability usually result in the formation of toxic aggregates. It is suggested that the stabilization of existing interfaces in multimeric proteins or the formation of new complexes in monomeric polypeptides might become effective strategies to prevent disease-linked aggregation of globular proteins
    corecore