12 research outputs found

    Discovery of selective monosaccharide receptors via dynamic combinatorial chemistry†

    Get PDF
    The molecular recognition of saccharides by synthetic hosts has become an appealing but elusive task in the last decades. Herein, we combine Dynamic Combinatorial Chemistry (DCC) for the rapid self-assembly and screening of virtual libraries of receptors, with the use of ITC and NMR to validate the hits and molecular modelling to understand the binding mechanisms. We discovered a minimalistic receptor, 1F (N-benzyl-l-phenylalanine), with considerable affinity for fructose (Ka = 1762 M−1) and remarkable selectivity (>50-fold) over other common monosaccharides. The approach accelerates the discovery process of receptors for saccharides

    Liver X Receptor Activation with an Intranasal Polymer Therapeutic Prevents Cognitive Decline without Altering Lipid Levels

    Get PDF
    The progressive accumulation of amyloid-beta (Aβ) in specific areas of the brain is a common prelude to late-onset of Alzheimer's disease (AD). Although activation of liver X receptors (LXR) with agonists decreases Aβ levels and ameliorates contextual memory deficit, concomitant hypercholesterolemia/hypertriglyceridemia limits their clinical application. DMHCA (N,N-dimethyl-3β-hydroxycholenamide) is an LXR partial agonist that, despite inducing the expression of apolipoprotein E (main responsible of Aβ drainage from the brain) without increasing cholesterol/triglyceride levels, shows nil activity in vivo because of a low solubility and inability to cross the blood brain barrier. Herein, we describe a polymer therapeutic for the delivery of DMHCA. The covalent incorporation of DMHCA into a PEG-dendritic scaffold via carboxylate esters produces an amphiphilic copolymer that efficiently self-assembles into nanometric micelles that exert a biological effect in primary cultures of the central nervous system (CNS) and experimental animals using the intranasal route. After CNS biodistribution and effective doses of DMHCA micelles were determined in nontransgenic mice, a transgenic AD-like mouse model of cerebral amyloidosis was treated with the micelles for 21 days. The benefits of the treatment included prevention of memory deterioration and a significant reduction of hippocampal Aβ oligomers without affecting plasma lipid levels. These results represent a proof of principle for further clinical developments of DMHCA delivery systems.Fil: Navas Guimaraes, Maria Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Catolica de Cuyo. Facultad de Ciencias Medicas. Instituto de Investigacion En Ciencias Biomedicas.; ArgentinaFil: Lopez Blanco, Roi. Universidad de Santiago de Compostela; EspañaFil: Correa, Juan. Universidad de Santiago de Compostela; EspañaFil: Fernandez Villamarin, Marcos. Universidad de Santiago de Compostela; EspañaFil: Bistue Millon, Maria Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Catolica de Cuyo. Facultad de Ciencias Medicas. Instituto de Investigacion En Ciencias Biomedicas.; ArgentinaFil: Martino Adami, Pamela Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Morelli, Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Kumar, Vijay. University of Colorado; Estados UnidosFil: Wempe, Michael F.. University of Colorado; Estados UnidosFil: Cuello, A. C.. McGill University; CanadáFil: Fernandez Megia, Eduardo. Universidad de Santiago de Compostela; EspañaFil: Bruno, Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Catolica de Cuyo. Facultad de Ciencias Medicas. Instituto de Investigacion En Ciencias Biomedicas.; Argentin

    Sirt1 protects from K-Ras-driven lung carcinogenesis.

    Get PDF
    The NAD+-dependent deacetylase SIRT1 can be oncogenic or tumor suppressive depending on the tissue. Little is known about the role of SIRT1 in non-small cell lung carcinoma (NSCLC), one of the deadliest cancers, that is frequently associated with mutated K-RAS Therefore, we investigated the effect of SIRT1 on K-RAS-driven lung carcinogenesis. We report that SIRT1 protein levels are downregulated by oncogenic K-RAS in a MEK and PI3K-dependent manner in mouse embryo fibroblasts (MEFs), and in human lung adenocarcinoma cell lines. Furthermore, Sirt1 overexpression in mice delays the appearance of K-RasG12V-driven lung adenocarcinomas, reducing the number and size of carcinomas at the time of death and extending survival. Consistently, lower levels of SIRT1 are associated with worse prognosis in human NSCLCs. Mechanistically, analysis of mouse Sirt1-Tg pneumocytes, isolated shortly after K-RasG12V activation, reveals that Sirt1 overexpression alters pathways involved in tumor development: proliferation, apoptosis, or extracellular matrix organization. Our work demonstrates a tumor suppressive role of SIRT1 in the development of K-RAS-driven lung adenocarcinomas in mice and humans, suggesting that the SIRT1-K-RAS axis could be a therapeutic target for NSCLCs.We thank Jesus Herranz for his biostatistical advice; and Alba de Martino, Patricia Gonzalez, Maria Gomez, and Zaira Vega, from the Histopathology Unit at the CNIO, for their work in mouse histopathology. Work in the laboratory of P.J.F.-M. was funded by the IMDEA Food, the Spanish Association against Cancer (aecc) and the Ramon Areces (CIVP18A3891) Foundation. Work in the laboratory of M.S. was funded by the CNIO and by grants from the Spanish Ministry of Economy co-funded by the European Regional Development Fund (SAF project), the European Research Council (ERC Advanced Grant), the European Union (RISK-IR project), and the Botin Foundation and Banco Santander (Santander Universities Global Division). Work in the laboratory of DH was funded by Rutgers Cancer Institute of New Jersey, the Alex's Lemonade Stand Foundation Shark Tank Award and by the National Institutes of Health Grant K99/R00 CA197869. Work in the laboratory of M.S.C. was supported by a grant (SAF2012-40026) from the Spanish Ministry of Science and Innovation. L.F.C-M. was supported by a PhD Fellowship from the Portuguese Foundation for Science and Technology (FCT-MCTES, SFRH/BD/124022/2016).S

    Electrochemical metal recycling:recovery of palladium from solution and in situ fabrication of palladium-carbon catalysts via impact electrochemistry

    No full text
    [Image: see text] Recycling of critical materials, regeneration of waste, and responsible catalyst manufacture have been repeatedly documented as essential for a sustainable future with respect to the environment and energy production. Electrochemical methods have become increasingly recognized as capable of achieving these goals, and “impact” electrochemistry, with the advantages associated with dynamic nanoelectrodes, has recently emerged as a prime candidate for the recovery of metals from solution. In this report, the nanoimpact technique is used to generate carbon-supported palladium catalysts from low-concentration palladium(II) chloride solutions (i.e., a waste stream mimic) as a proof of concept. Subsequently, the catalytic properties of this material in both synthesis (Suzuki coupling reaction) and electrocatalysis (hydrogen evolution) are demonstrated. Transient reductive impact signals are shown and analyzed at potentials negative of +0.4 V (vs SCE) corresponding to the onset of palladium deposition in traditional voltammetry. Direct evidence of Pd modification was obtained through characterization by environmental scanning electron microscopy/energy-dispersive X-ray spectroscopy, inductively coupled plasma mass spectrometry, X-ray photoelectron spectroscopy, transmission electron microscopy, and thermogravimetric analysis of impacted particles. This showed the formation of deposits of Pd0 partially covering the 50 nm carbon black particles with approximately 14% Pd (wt %) under the conditions used. This material was then used to demonstrate the conversion of iodobenzene into its biphenyl product (confirmed through nuclear magnetic resonance) and the successful production of hydrogen as an electrocatalyst under acidic conditions (under cyclic voltammetry)

    Peripheral Functionalization of Dendrimers Regulates Internalization and Intracellular Trafficking in Living Cells

    No full text
    GATG (gallic acid-triethylene glycol) dendrimers represent appealing nanostructures for biomedical applications. The incorporation of specific ligands and targeting and imaging agents on their surface has resulted in promising tools in diagnosis and drug delivery. With the aim to further explore the versatility of GATG dendrimers in the biomedical field, in this work we study the effect of peripheral substitution on their uptake and intracellular trafficking in living cells. To this end, peripheral groups with different physicochemical properties and biological relevance have been installed on the surface of GATG dendrimers, and their interactions, uptake efficacy, and specificity for certain cell populations studied by confocal microscopy. Finally, this information was used to design a pH-sensitive drug delivery system for the selective release of cargo molecules inside cells after lysosomal localization. These results along with the easy functionalization and modular architecture of GATG dendrimers reveal these systems as promising nanotools in biomedicine

    Multivalent Affidendrons with High Affinity and Specificity toward Staphylococcus aureus as Versatile Tools for Modulating Multicellular Behaviors

    No full text
    International audienceMultivalency is a widely occurring natural phenomenon often exploited in nanotechnology to enhance biorecognition. We report the preparation and characterization of versatile, multivalent Affitin-dendrimer conjugates (Affidendrons) showcased by a set targeting Staphylococcus aureus (S. aureus), an opportunistic pathogen causing numerous hospital-and community-acquired infections. Affitins are small affinity proteins characterized by higher stability and lower cost-effective production than antibodies. The strategy presented provides a platform for the rational design of multivalent nanodevices that, retaining the ability of Affitins to recognize their target with high specificity, achieve a largely enhanced affinity. Affidendrons with precisely designed size and valency have been exploited to modulate complex multicellular behaviors of S. aureus, such as agglutination and biofilm formation. Agglutination assays showed that Affidendrons rapidly cross-link S. aureus strains with high bacterial cell selectivity. Moreover, remarkably low concentrations of Affidendrons were able to effectively prevent biofilm formation. Overall, Affidendrons represent a promising platform for the rapid and selective pathogen identification, infection imaging, and theranostic applications

    A dendrimer-hydrophobic interaction synergy improves the stability of polyion complex micelles

    No full text
    © The Royal Society of Chemistry. Polyion complex (PIC) micelles incorporating PEG-dendritic copolymers display an unprecedented stability towards ionic strength that is amplified via hydrophobic interactions. The tridimensional orientation of peripheral hydrophobic linkers between charged groups and the globular/rigid dendritic scaffold maximizes this stabilization compared to PIC micelles from linear polymers. As a result, micelles stable at concentrations higher than 3 M NaCl are obtained, which represents the highest saline concentration attained with PIC micelles. Advantages of this stabilizing dendritic effect have been taken for the design of a robust, pH-sensitive micelle for the controlled intracellular release of the anticancer drug doxorubicin. This micelle displays a slightly higher toxicity, and distinctive mechanisms of cell uptake and intracellular trafficking relative to the free drug. The preparation of mixed PIC micelles by combining differently functionalized PEG-dendritic block copolymers has allowed the fine-tuning of their stability, paving the way towards the facile modulation of properties like biodegradability, drug loading, or the response to external stimuli.status: publishe

    Establishing a quantitative fluorescence assay for the rapid detection of kynurenine in urine

    No full text
    The kynurenine metabolite is associated with many diseases and disorders, ranging from diabetes and sepsis to more recently COVID-19. Here we report a fluorescence-based assay for the detection of kynurenine in urine using a specific chemosensor, 3-formyl-4-(ethylthio)-7-(diethylamino)-coumarin. The assay produces a linear response at clinically relevant ranges (1–20 μM), with a limit of detection of 0.7 μM. The average standard addition recoveries of kynurenine in synthetic urine samples are near to 100%, and the relative standard deviation values are less than 8%. The established fluorescence assay for quantitative analysis of kynurenine in urine is facile, sensitive and accurate and holds great potential for low-cost and high-throughput analysis of kynurenine in clinical laboratory settings
    corecore