6,275 research outputs found

    The space of complete embedded maximal surfaces with isolated singularities in the 3-dimensional Lorentz-Minkowski space \l^3

    Full text link
    We show that a complete embedded maximal surface in the 3-dimensional Lorentz-Minkowski space L3L^3 with a finite number of singularities is, up to a Lorentzian isometry, an entire graph over any spacelike plane asymptotic to a vertical half catenoid or a horizontal plane and with conelike singular points. We study the space GnG_n of entire maximal graphs over {x3=0}\{x_3=0\} in L3L^3 with n+12n+1 \geq 2 conelike singularities and vertical limit normal vector at infinity. We show that GnG_n is a real analytic manifold of dimension 3n+4,3n+4, and the coordinates are given by the position of the singular points in R3R^3 and the logarithmic growth at the end. We also introduce the moduli space MnM_n of {\em marked} graphs with n+1n+1 singular points (a mark in a graph is an ordering of its singularities), which is a (n+1)(n+1)-sheeted covering of Gn.G_n. We prove that identifying marked graphs differing by translations, rotations about a vertical axis, homotheties or symmetries about a horizontal plane, the corresponding quotient space MnM_n is an analytic manifold of dimension 3n1.3n-1.Comment: 32 pages, 4 figures, corrected typos, former Theorem 3.3 (now Theorem 2.2) modifie

    Computing Safe Contention Bounds for Multicore Resources with Round-Robin and FIFO Arbitration

    Get PDF
    Numerous researchers have studied the contention that arises among tasks running in parallel on a multicore processor. Most of those studies seek to derive a tight and sound upper-bound for the worst-case delay with which a processor resource may serve an incoming request, when its access is arbitrated using time-predictable policies such as round-robin or FIFO. We call this value upper-bound delay ( ubd ). Deriving trustworthy ubd statically is possible when sufficient public information exists on the timing latency incurred on access to the resource of interest. Unfortunately however, that is rarely granted for commercial-of-the-shelf (COTS) processors. Therefore, the users resort to measurement observations on the target processor and thus compute a “measured” ubdm . However, using ubdm to compute worst-case execution time values for programs running on COTS multicore processors requires qualification on the soundness of the result. In this paper, we present a measurement-based methodology to derive a ubdm under round-robin (RoRo) and first-in-first-out (FIFO) arbitration, which accurately approximates ubd from above, without needing latency information from the hardware provider. Experimental results, obtained on multiple processor configurations, demonstrate the robustness of the proposed methodology.The research leading to this work has received funding from: the European Union’s Horizon 2020 research and innovation programme under grant agreement No 644080(SAFURE); the European Space Agency under Contract 789.2013 and NPI Contract 40001102880; and COST Action IC1202, Timing Analysis On Code-Level (TACLe). This work has also been partially supported by the Spanish Ministry of Science and Innovation under grant TIN2015-65316-P. Jaume Abella has been partially supported by the MINECO under Ramon y Cajal postdoctoral fellowship number RYC-2013-14717. The authors would like to thanks Paul Caheny for his help with the proofreading of this document.Peer ReviewedPostprint (author's final draft

    Multicore Early Design Stage Guaranteed Performance Estimates for the Space Domain

    Get PDF
    The ability to produce early guaranteed performance (worst-case execution time) estimates for multicores, i.e. before software from different providers gets integrated onto the same critical system, is pivotal. This helps reducing lately-detected costly-to-handle timing violations. An existing methodology creates ‘copy’ (surrogate) applications from the execution in isolation of each target application. Surrogate applications can be used to upperbound multicore contention delay, and hence WCET estimates in multicores. However, this methodology has only been shown to work on a simulation environment. In this paper we show the work we have carried out to adapt this technology to a real multicore processor for the space domain.This work has been partially supported by the Spanish Ministry of Economy and Competitiveness (MINECO) under grant TIN2015-65316-P, and the HiPEAC Network of Excellence. Jaume Abella has been partially supported by the MINECO under Ramon y Cajal postdoc fellowship RYC-2013-14717.Peer ReviewedPostprint (author's final draft

    Correlation of airloads on a two-bladed helicopter rotor

    Get PDF
    Airloads measured on a two-bladed helicopter rotor in flight during the Ames' Tip Aerodynamic and Acoustic Test are compared with calculations from a comprehensive helicopter analysis (CAMRAD/JA), and the pressures compared with calculations from a full-potential rotor code (FPR). The flight-test results cover an advance ratio range of 0.19 to 0.38. The lowest-speed case is characterized by the presence of significant blade-vortex interactions. Good correlation of peak-to-peak vortex-induced loads and the corresponding pressures is obtained. Results of the correlation for this two-bladed rotor are substantially similar to those for three- and four-bladed rotors, including the tip-vortex core size for best correlation, calculation of the peak-to-peak loads on the retreating side, and calculation of vortex iduced loads on inboard radial stations. The higher-speed cases are characterized by the presence of transonic flow on the outboard sections of the blade. Comparison of calculated and measured airloads on the advancing side is not considered appropriate because the presence of shocks makes chordwise integration of the measured data difficult. However, good correlation of the corresponding pressures is obtained

    Lipidic lyotropic liquid crystals: Insights on biomedical applications

    Get PDF
    Liquid crystals (LCs) possess unique physicochemical properties, translatable into a wide range of applications. To date, lipidic lyotropic LCs (LLCs) have been extensively explored in drug delivery and imaging owing to the capability to encapsulate and release payloads with different characteristics. The current landscape of lipidic LLCs in biomedical applications is provided in this review. Initially, the main properties, types, methods of fabrication and applications of LCs are showcased. Then, a comprehensive discussion of the main biomedical applications of lipidic LLCs accordingly to the application (drug and biomacromolecule delivery, tissue engi-neering and molecular imaging) and route of administration is examined. Further discussion of the main limi-tations and perspectives of lipidic LLCs in biomedical applications are also provided.Statement of significance: Liquid crystals (LCs) are those systems between a solid and liquid state that possess unique morphological and physicochemical properties, translatable into a wide range of biomedical applications. A short description of the properties of LCs, their types and manufacturing procedures is given to serve as a background to the topic. Then, the latest and most innovative research in the field of biomedicine is examined, specifically the areas of drug and biomacromolecule delivery, tissue engineering and molecular imaging. Finally, prospects of LCs in biomedicine are discussed to show future trends and perspectives that might be utilized. This article is an ampliation, improvement and actualization of our previous short forum article "Bringing lipidic lyotropic liquid crystal technology into biomedicine" published in TIPS

    Magnetic-field control of near-field radiative heat transfer and the realization of highly tunable hyperbolic thermal emitters

    Get PDF
    We present a comprehensive theoretical study of the magnetic field dependence of the near-field radiative heat transfer (NFRHT) between two parallel plates. We show that when the plates are made of doped semiconductors, the near-field thermal radiation can be severely affected by the application of a static magnetic field. We find that irrespective of its direction, the presence of a magnetic field reduces the radiative heat conductance, and dramatic reductions up to 700% can be found with fields of about 6 T at room temperature. We show that this striking behavior is due to the fact that the magnetic field radically changes the nature of the NFRHT. The field not only affects the electromagnetic surface waves (both plasmons and phonon polaritons) that normally dominate the near-field radiation in doped semiconductors, but it also induces hyperbolic modes that progressively dominate the heat transfer as the field increases. In particular, we show that when the field is perpendicular to the plates, the semiconductors become ideal hyperbolic near-field emitters. More importantly, by changing the magnetic field, the system can be continuously tuned from a situation where the surface waves dominate the heat transfer to a situation where hyperbolic modes completely govern the near-field thermal radiation. We show that this high tunability can be achieved with accessible magnetic fields and very common materials like n-doped InSb or Si. Our study paves the way for an active control of NFRHT and it opens the possibility to study unique hyperbolic thermal emitters without the need to resort to complicated metamaterials.Comment: 21 pages, 10 figure
    corecore