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A B S T R A C T   

Liquid crystals (LCs) possess unique physicochemical properties, translatable into a wide range of applications. 
To date, lipidic lyotropic LCs (LLCs) have been extensively explored in drug delivery and imaging owing to the 
capability to encapsulate and release payloads with different characteristics. The current landscape of lipidic 
LLCs in biomedical applications is provided in this review. Initially, the main properties, types, methods of 
fabrication and applications of LCs are showcased. Then, a comprehensive discussion of the main biomedical 
applications of lipidic LLCs accordingly to the application (drug and biomacromolecule delivery, tissue engi-
neering and molecular imaging) and route of administration is examined. Further discussion of the main limi-
tations and perspectives of lipidic LLCs in biomedical applications are also provided. 
Statement of significance: Liquid crystals (LCs) are those systems between a solid and liquid state that possess 
unique morphological and physicochemical properties, translatable into a wide range of biomedical applications. 
A short description of the properties of LCs, their types and manufacturing procedures is given to serve as a 
background to the topic. Then, the latest and most innovative research in the field of biomedicine is examined, 
specifically the areas of drug and biomacromolecule delivery, tissue engineering and molecular imaging. Finally, 
prospects of LCs in biomedicine are discussed to show future trends and perspectives that might be utilized. 
This article is an ampliation, improvement and actualization of our previous short forum article “Bringing lipidic 
lyotropic liquid crystal technology into biomedicine” published in TIPS.   

1. Introduction 

Liquid crystals (LCs) are those systems between a solid and liquid 
state [1,2]. They were discovered by the Austrian botanic Friedrich 
Reintitzer in 1888, who found out cholesterol intermedium trans-
formations [3] and they were lately named liquid crystals by the German 
physicist Otto Lehmann [4], who also stablished their optic anisotropy 
and birefringence [2,5]. Jacques Friedel, a pioneer in the field of LCs, 
defined the liquid-crystalline phase as a mesophase, which comes from 
the Greek prefix intermediate [6,7]. According to the IUPAC, this 

mesomorphic state is a molecular arrangement halfway between a 
liquid/gas or amorphous solid (without any long-range order) and solid 
crystals (with a long-range orientational and positional 3D order) [8,9]. 
LCs have a long-range orientational order with a partial or complete 
positional disorder (Fig. 1A) [7,10]. Indeed, LCs are materials which 
combine liquids and crystalline solid properties. LCs can flow like a 
liquid as well as to diffract X-rays, a characteristic shared by crystalline 
solids [7]. LCs are anisotropic materials, varying their properties 
depending on the measurement direction. For example, LCs viscosity is 
lower when it is measured in the same direction that the molecule 
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orientation. Above certain temperatures, LCs anisotropy switch to isot-
ropy behavior, being their properties independent of the measurement 
direction [1]. 

These materials have been in nature since the origin of the cell, as 
cell membranes display a 1-D flat lamellar structure [11]. LCs can be 
observed in the wall/plasmalemma interface during cell wall growth, 
that seems to be provoked by the membrane self-assembly [12]. More-
over, spiders store the silk coat protein as LCs [13]. All lipid systems can 
form LCs under appropriate water content and temperature [14]. But 
there are many other molecules in nature that form LCs. For instance, 
mucilage’s celluloses can self-assemble in LCs [15], collagen I forms a 
twisted liquid crystalline phase after several hours post-sonication [16], 
and even some nucleic acids can form LC phases [17], such as sodium 
thymonucleate [18] or the six base pairs long complementary RNA 
oligomers forming chiral and columnar nematics [19]. Another example 
is the double-stranded DNA of bacteriophage T5, which undergoes a 
crystalline liquid transition to provide the required genome fluidity to 
leave the capsid [20]. Lipids secreted by alveolar epithelial cells also 
form LCs bilayers containing hydrophobic proteins embedded in it in 
aqueous solutions, which seems to be key for its secretion [21]. This has 
been proved in vitro at physiological temperature with extracts from 
bovine and porcine lung surfactants which form laminar LCs in aqueous 
solutions. Interestingly, LCs can recapitulate some biological features. 
For instance, nanometric dispersions of lyotropic LCs have a thermic 
biomimetic behavior, mimicking the skin inter-cellular lipids. Indeed, 
this property gives LCs good permeability and skin retention properties 
[22]. The most widespread use of LCs is liquid crystal displays (LCD), 
used in mobile phones, tablets, or laptops, among others [17]. However, 
in the last years LCs have proved their appropriateness as active sub-
stances delivery platforms. 

The aim of this review is to highlight the main uses of lipid LCs in 
biomedicine. Lipid Lyotropic LCs (lipid LLCs) have evidenced their po-
tential in this field by controlling the release of active substances [23], 
their biodegradation products biocompatibility [24,25], their easiness 
in tuning and tailoring their properties [26], thermodynamic stability 
[24], economic profitability [27], scalability [28], etc. Therefore, they 
are a suitable platform for biomedical research. A detailed description of 
the types, characteristics and manufacturing methods of LCs is provided 
as well as the most recent research of LCs in biomedical research is 
discussed, covering the fields of drug and biomacromolecule delivery, 
molecular imaging, and tissue engineering in the last decade. Finally, 
the prospects and trends of LCs in biomedicine are discussed. 

2. LCs classification and manufacturing 

2.1. LCs classification 

LCs are classified according to their bond type (ionic and molecular) 
[29], molecular geometry (discotics, calamitics) [5,29] and, most 
importantly, their appearance (lyotropics, thermotropics) [1,7,10,29]. 
Thermotropic LCs are made up of molecules that react to changes in 
temperature, while lyotropic LCs (LLCs) are made up of molecules that, 
at a given temperature range and solvent, are formed by changes in the 
concentration of the molecules. Lyotropics and thermotropics have 
different mesophases which can be identified by measuring their optical 
isotropy by cryofracturing electron microscopy, polarized light micro-
scopy, low angle X-ray scattering (SAXS), neutron diffraction and low 
angle neutron scattering (SANS) [30]. Mesophases can be differentiated 
between a normal (convex) and inverse (concave) depending on the 
interface formed by the surfactant and water (Fig. 1B) [31,32]. How-
ever, there is a mesophase without curvature (the intermediate point), 
which is known as the lamellar phase (Lα) (Fig. 1B) [32]. 

2.1.1. Thermotropic LCs 
Thermotropic LCs (TLCs), such as the ones formed by cholesteryl 

benzoate [10], are formed by some organic molecules through temper-
ature changes, without the requirement of a solvent [29]. They can be 
subclassified in monotropics – when LCs are only formed by temperature 
reduction – or enantiotropics – when LCs are formed by temperature 
increases or reductions [5]. Thermotropic LCs can also be subclassified 
according to their structure (molecule’s disposition) in smectics (mole-
cules with various structure types are aligned forming layers), nematics 
(molecules follow the direction of a vector and are orientated in the 
same direction except for some deviated) and cholesterics (molecules 
have only one structure forming layers disposed with diverse angles with 
a helical pattern) [1,5,29,33], having the nematic and cholesteric LCs 
only orientational and not spatial order [6]. In nematics forming films, 
we can distinguish between planar nematic (parallel to the support) and 
nematic homeotrope (perpendicular to the support) [2]. Interestingly, 
cholesterics LCs have their origin in cholesterol, although cholesterol 
cannot form LCs, almost all its derivatives form cholesteric LCs [2]. 

2.1.2. Lyotropic LCs 
LLCs are formed through changes in the material concentration, over 

a temperature range when certain substances are dispersed in a liquid. 

Fig. 1. Internal structure of liquid crystals. (A) Liquid crystals possess an internal structure between solids and liquids/gas and are therefore considered to be an 
intermediate state or mesophase. (B) Mesophases can experiment different types of curvatures in presence of water: convex (normal), concave (inverse) or without 
curvature (lamellar phase) depending on the amount of water in the system. 
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At fixed temperatures, they will appear in a concentration interval [7]. 
Increasing concentrations of the solute, which it is usually a surfactant, 
allows the formation of LLCs [29,33]. The most common LLCs used in 
the biomedical field are lamellar, hexagonal, and cubic phases [7]. 

Lamellar LLCs, also called the neat soap phase, is the most common 
LLC and is highly used in the detergent industry [33]. Its lamellar 
structure [33] is observed as lamellar phase Lα (Fig. 2) or the uncommon 
lamellar phase Lβ [31]. Lα is formed by layers of amphiphilic molecules 
and water [7,31,32,34] and they occur at the interface of the emulsions, 
since they increase their stability [7]. 

Hexagonal LLCs have a hexagonal shape and can be subclassified in 
normal or reverse (Fig. 2). Normal hexagonal (HI) LLCs have a two- 
dimensional hexagonal grid where cylindrical micelles are arranged 
and the water is dispersed between the cylinders as a continuous phase 
[7,31,32,34] whereas in reverse hexagonal (HII) LLCs their volume is 
separated in two, one occupied by hydrocarbon chains and the other 
occupied by a delimited water nucleus. This delimitation is given by the 
polar head of the molecules or their ions of the amphiphilic substances 
[7,31,32,34]. 

Cubic LLCs are classified in bicontinuous or discontinuous (Fig. 2). 
Bicontinuous LLCs are based on periodic minimum surfaces, and they 
correspond to the area between the lamellar and hexagonal phase in 
phase diagrams [7]. They can have an inverse bilayer with water inside 
(type I or VI) or polar domains separated by a normal bilayer (type II or 
VII) [7]. On the other hand, discontinuous LLCs are integrated by com-
plex accommodations and the micellar ones, by discrete micellar ag-
gregates. When LLCs are dispersed in water, lamellar phase LLCs form 
liposomes, whereas cubic phase and hexagonal phase maintain their 
integrity forming cubosomes or hexosomes respectively [11,35,36]. 
Within LLCs, there is also a difference between normal and inverted, 
being inverted LLCs optimal for preparing stable LC nanoparticles 
(LCNPs) suspensions under excess water conditions [37]. Interestingly 
hexosomes can cross the cell membrane thanks to a distortion of the cell 
membrane [38]. Indeed, hexosomes do not experiment fusion or endo-
cytosis, but rather an exhaustion of the regulatory proteins which leads 
to a distortion of the cell membrane by decreasing its tension, thus 
crossing the bilayer [38]. 

LLCs can present other mesostructures, sometimes referred to as 
illdefined LLCs. Some examples are the sponge phase (L3) and the ribbon 
phase (R1). L3 are bicontinuous and disordered cubic phase formed by a 
bicontinuous network of surfactant bilayers highly interconnected. R1 
has in general rhombohedral symmetry, although monoclinic and 

tetragonal symmetries can also be found formed by water and surfactant 
[34]. 

2.1.3. Advantages, disadvantages and other uses of TLCs and LLCs 
TLCs and LLCs possess advantageous characteristics, such as their 

stability and stimuli-sensitivity, to be used in biomedical and industrial 
applications [39]. TLCs are easier to fabricate than LLCs [40], and they 
possess temperature-sensitivity, making them good thermo-responsive 
drug delivery systems [41,42]. However, their simplicity and ease of 
processing is not always compatible with the encapsulation of thera-
peutics, due to the need of adding a solvent to solubilize the active 
ingredient. On the other hand, LLCs are easy and economic manufacture, 
biodegradable, biocompatible, stimuli-responsive, they can encapsulate 
hydrophobic and hydrophilic drugs, sustain, and control drug release, 
and it can enhance cellular internalization due to specific interactions 
[43–48]. However, LLCs possess some drawbacks, such as lower long- 
term stability and larger complexity when compared to TLCs. Some 
drugs such as Nafoxidine hydrochloride or Palmitolyl propranolol hy-
drochloride have thermotropic and lyotropic forms. Despite being a 
minority of drugs with this property, it can be used to improve the 
solubility of drugs. For example, Fenoprofen cacium can form TLCs form 
to achieve greater solubility, to then form LLCs when in contact with 
water [49]. 

LCs have a great number of applications, due to their unique char-
acteristics. For example, LCs can form pores of specific diameters, 
making them suitable materials for the creation of filtration membranes, 
such as filter membranes for water treatment [50]. However, most of the 

Fig. 2. LLCs classification according to the internal structures, LLCs can show different structures depending on the amount of water in the system.  

Table 1 
Main applications of LLCs and TLCs.  

TYPE USES REF 

LLC Filtration membranes [57] 
Optical materials [58] 
Reduce the self-discharge in supercapacitors [59] 
Creation of electrodes [60] 
Gel electrolyte for a solar cell [61] 

TLC Diagnostic Kit for SARS-CoV-2 [62] 
Report virulence and bacterial quorum sensing [63] 
Actuators for soft robotics, bionic manufacturing and micro/nano 
devices with load, ambient temperature, and strain sensing 
capabilities 

[64] 

3D-printing of composites [65] 
DNA LCs for bioelectronic devices, biocatalysts and biosensors [66]  
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uses revolve around electronics and detection of biomolecules (Table 1). 
LCs can manifest changes in birefringence when they interact with 
biomolecules or even amplify the signal, making them ideal candidates 
for biodetection [51,52]. They can even be functionalised to react only 
to selected pathogens [53]. The field of biosensing in LLCs is dominated 
by chromonic LCs containing aromatic groups with more rigid molec-
ular shapes (blade-shaped or plank-shaped) [54]. Therefore, these 
properties as well as their low cost, easy manipulation, and fast response 
[51], make them very attractive detection system and are under constant 
research. 

TLCs are mainly used in optical and electronic devices (flat panel 
displays, field effect transistors, optical compensating films, hole- 
transporting material in photovoltaics, electret in nonvolatile memory, 
mirrorless lasers). For example, nematic TLCs are used for the fabrica-
tion of flat panel displays, due to their capability of forming mono-
domains, fast response to electric fields and low viscosity [55]. Another 
possible application of TLCs is the possibility of creating fluorescent 
TLCs encapsulating DNA, with possible applications in the field of bio-
imaging in solvent-free conditions [56]. 

2.2. LLCs manufacturing 

LLCs are formed by two main components, the material forming the 
LLCs [35] and the solvent, being water the most used for preparing 
them. The materials forming LLCs have, in general, amphiphilic mole-
cules with a discoidal or elongated shape, and a random gravity center 
with a long-range orientation order [29]. The anisotropic form and the 
weak interactions between the molecules (dipole-dipole interactions, 
hydrogen bonding and/or dispersion forces) explain the behavior of 
LLCs [1]. Altogether lead to interactions between the molecules that 
force them into a preferential orientation. However, molecules can still 
experiment movements alongside their axes, as they are not under the 
effect of stronger bonds, their elongated dimensions, and their parallel 
packing [1]. 

2.2.1. Materials used for lipid LLCs fabrication 
Glyceryl monooleate (GMO)/water is one of the most well-known 

LLCś systems [7] because they can form different types of LLCs such 
as lamellar (Lα), reversed micellar (L2 phases), cubic (Q) or hexagonal 
(H) phases. GMO is a lipid characterized by being polar and poorly 
soluble in water [36]. Nevertheless, there are many other amphiphilic 
materials that can be used to fabricate LLCs, such as surfactants like 
amphiphilic block copolymers (Poloxamer 407 [37]) or many other 
lipids [10,38]. This review will focus on lipid LLCS, as non-lipid LLCs 
have been previously addressed by other authors [67–72]. Triglycerides 
and sterols are the most common lipids used for fabricating thermo-
tropic LCs [24], whereas fatty acids such as phospholipids, mono-
glycerides or galactolipids are the most used lipids in lipid LLCs [24]. 

LLCs used in biomedicine, usually combine lipids, water, and sur-
factants to increase their stability [37,73]. GMO and phytantriol are the 
most used lipids for the formation of non-lamellar LLCs in drug delivery 
systems [11,74]. These two molecules are surfactant-like lipids [75,76] 
that can form LLCs in excess of water or other solvents [77]. However, 
there are many other lipids that can be used, depending on the required 
properties of the platform. For instance, platforms that need high 
chemical stability will use molecules without unsaturation or ester 
bonds like phytantriol, as phospholipids or GMO might be degraded by 
acid and enzymatic hydrolysis and lipids with unsaturations are sus-
ceptible to oxidative degradation. Another crucial factor is the lipid 
bioactive loading capacity [11], which depends on factors such as its 
polymorphic state, its chemical structure, or how soluble the drug in 
question is in the lipid [78,79]. Interestingly, natural products are 
increasingly being used to obtain delivery platforms. Plant components 
have been incorporated into LLCs due to their low molecular weight and 
low viscosity. For instance, essential oils can reduce the occlusion, 
improve the skin penetration, and increase the loading of active 

substances in LLCs in comparison with mineral oils [30]. Some examples 
of essential oils are andiroba [73], peach [80] or oils obtained from 
various plants (avocado, passion fruit…) [81]. LLCs can be also com-
bined with metals (metallogenic LLCs), obtaining new materials with 
magnetic, electrical and/or luminescent properties as well as new ge-
ometries [82]. This is due to the variability in coordination geometries 
of this type of ions [83]. Lipid LLCs are also generally combined with 
copolymers, such as P407, to stabilize cubosomes and hexosomes, and 
appears to contribute beyond adsorption on membranes [38]. 

2.2.2. Lipid LLCs fabrication 
LLCs are composed of water and lipidic amphiphilic molecules, 

surfactants, as well as, in some cases, co-surfactants. They always occur 
in certain proportions of these components spontaneously or with a low 
energy input [84,85]. LLC bulk can be formed by simply mixing the lipid 
phase with the aqueous phase, for example by ultrasonication or vor-
texing. However, cubosomes and hexosomes require more complicated 
methods for their fabrication, being the top-down and bottom-up ap-
proaches the most common methods (Fig. 3A) [86]. Nevertheless, other 
strategies like heat treatment [86] or spray drying [86] can be used. 
Interestingly, several attempts have been done to fabricate LLCs with 
automated processes [35]. 

In top-down techniques, the stabilizer(s) and lipid(s) are firstly 
mixed to obtain a bulk cubic/hexagonal phase [87,88]. Then, they are 
dispersed by sonication, shearing or high-pressure homogenization in an 
aqueous medium [86,89–92]. Temperature must be controlled during 
the fabrication process [86], as it will impact the type obtained or the 
formation or not of LLCs. For instance, cubosomes can be prepared by 
homogenization at temperatures ranging from 40 to 60 ◦C [88,92], 
whereas hexosomes fabricated by shearing require temperatures of 
100 ◦C [93]. Because of the requirement of high temperatures for LLCs, 
this method is not suitable for proteins and thermolabile substances 
[90,94]. 

In bottom-up methods, a hydrotrope (an amphiphilic molecule 
without surfactant properties) is used to dissolve the lipids at room 
temperature avoiding the formation of LLCs at high lipids concentra-
tions [87,89,92]. This precursor is then diluted into the solvent, 
reducing the lipids solubility, and forming the cubosomes/hexosomes. 
Bottom-up approaches require lower energies to produce the LLCs, and 
they are in general more stable and smaller [86,87,93]. Therefore, it is a 
suitable method for encapsulating proteins and thermolabile substances 
[90,94]. 

3. Morphological varieties and physicochemical properties of 
the LLCs 

Hydrophobic forces drive the self-assembly of LLCs to minimize the 
interactions between the aqueous environment and their hydrocarbon 
tails. Small variations at the head or tail level in the amphiphilic 
molecule result in the formation of thermodynamically stable phases 
with increased interfacial curvature, often resulting in increased 
dimensionality. Therefore, the structure that these molecules form in 
water depends on their geometrical shape [11]. In the Table 2 the 
properties of the different types of LCs are described. 

Their structural differences from other drug delivery systems and 
from each other lead to different properties or variations in certain pa-
rameters. In general, we can describe lipid LLCs with the following 
physicochemical properties: critical packing parameter, curvature, 
order parameter, small-angle X-ray diffraction, birefringence and other 
optical properties, and transition temperature. Polarized light micro-
scopy [99], Small-angle X-ray scattering [100], NMR [101] or Cryogenic 
Transmission Electron Microscopy [100] can be used to characterize 
LLCś physicochemical properties. 
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3.1. Critical packing parameter 

Amphiphilic molecules shapes favor the formation of different types 
of LLCs as well as impact the drug entrapment and release. The shape 
factor effect can be evaluated through the critical packing parameter 
(CCP) [102], which refers to the equilibrium of interaction that occurs 

between the polar and apolar zones in an amphiphile [103]. CCP is 
defined in eq. 1, being ν the lipid hydrophobic volume, a0 the hydro-
philic group interfacial area and lc the maximum length of the hydro-
phobic chains [104]. This parameter allows to decipher which is the 
most effective molecular shape to use the LLCs as drug carriers [105], by 
predicting the type of phases most likely to be formed by a particular 
lipid (Fig. 3B) [99,106]. 

CPP =
υ

a0 × lc
(1)  

3.2. Curvature 

The curvature of lipid molecules, which is related to the biological 
functions of lipids [107], also influences the LLCs morphology [108]. 
The mean curvature allows the differentiation between normal phases 
(with positive mean curvature) and inverse phases (with negative mean 
curvature) [108]. For example, a system consisting of water and GMO 
and resulting in either a bicontinuous cubic phase or a lamellar phase, 
due to symmetry, will have an average curvature of 0 [109]. This value 
is defined by eq. 2, being the c1 and c2 the two curvatures and R1 and R2 
the radii of each curvature [24]. 

H =
1
2
×

(
1

R1
+

1
R2

)

=
1
2
×(c1 + c2) (2) 

The Gaussian curvature (K) is also used to define the LLCs curvature. 
It enables the determination of the surface topology, being 0 for a cyl-
inder, less than 0 for a hyperboloid and greater than 0 for a sphere [110]. 
More conclusive studies are needed on how it influences the transitions 
between non-lamellar and lamellar phases, as theories on this issue have 
not been able to perfectly match the reality of the transitions, but it 
seems to be an important parameter [111]. K is defined by (Eq. 3), being 
c1 and c2 the two main curvatures. K values of 0 are obtained in the 
inversed cylindrical micelles 2D packed such as inverse hexagonal HII 
phase, whereas K values above 0 are observed in spheres/ellipsoids 3D 
packed such as inverse ordered micelles and values below 0 are achieved 
in saddle surfaces 3D packed like inverse bicontinuous phases [24]. 

K = c1 × c2 (3)  

3.3. Order parameter 

The term order parameter (<P2>) arises from the average orienta-
tion of the molecules around an axis. <P2 > measures the order of the 
molecules with respect to this axis [7,112,113], and it is represented in 
Eq. 4, where β is the angle formed between the molecule and the 

Fig. 3. Methods to produce LLCs and critical packaging parameter (CPP). (A) 
Diagram of the two main methods of production for cubosomes and hexosomes. 
In top-down techniques, high dispersion forces are required to mix the lipids 
with the stabilizers in an aqueous medium. However, bottom-up techniques 
pre-dissolve the lipids in a hydrotrope and mix it with the solvent, requiring low 
dispersion forces. (B) CPP description. This value indicates the type of LLCs that 
will be obtained, and it depends on the lipid hydrophobic volume (ν), the hy-
drophilic group interfacial area (a0) and the maximum length of the hydro-
phobic chains (lc). 

Table 2 
Types of LLCs and their physicochemical properties. G (gyroid), D (diamond) 
and P (Schwarz) refer to the minimum periodic infinite surfaces (IPMS) of cubic 
LLCs, being IPMS a three-dimensional periodic intersection free surface with an 
average curvature that is everywhere zero [95].  

LLC TYPE PROPERTIES REF 

Lamellar Lα - Fluid 
- One optical axis 

[7,96] 

Hexagonal Normal 
hexagonal (HI) 

-Do not flow under gravity 
-Plastic behavior 
-Lower proportion of surfactant 
than laminar phase 

[7,96]  

Reverse 
hexagonal (HII) 

- It is typical of phospholipids and 
mixtures of fatty acids and 
phosphatidylcholine. 

[7] 

Cubic Cubical phases - High viscosity 
- No birefringence 
-High complexity, difficult to 
characterize 

[7,27,97]  

Bicontinuous - In a mathematical perspective, G, 
D and P can be distinguished. 

[7,34,97,98]  
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symmetry axis. 

< P2 >=
3 × (cos2β) − 1

2
(4)  

3.4. Small-angle X-ray diffraction 

As each phase has a different structure, the small-angle X-ray 
diffraction provides us with information about it. Between layers, there 
are specific repeating distances, d, allowing us to characterize the 
structures based on this value. The long-range order is measured with 
small-angle X-ray diffraction using eq. 5 [114], where λ is the X-ray 
wavelength, n nominates the interference order, and γ is the angle at the 
interference [114]. 

sen(γ) =
n × λ
2 × d

(5)  

3.5. Birefringence 

When light strikes the LLCs there is a division into two polarized and 
perpendicular rays, except the cubic LLCs [7]. There are a few optical 
properties that allow the distinguishment between different types of 
LLCs [114] having lamellar LLCs more birefringence with a mosaic 
texture and crosses [7,114] and hexagonal LLCs less birefringence and a 
fan texture [7,114]. 

4. LLCs biomedical applications 

4.1. Drug delivery 

The use of LLCs in drug delivery has gained popularity in recent years 
[115]. LLCs are a highly versatile platforms allowing the encapsulation 
of water-soluble drugs in the polar zone and liposoluble drugs between 
the hydrocarbon chains. The high viscosity of LLCs allows the sustained 
release of the payloads. Therapeutic molecules can be released from 
aqueous channels in the LCs, being its release dependent on the char-
acteristics of the drug [116]. 

LLCs can also possess stimuli-sensitivity to release the payloads 
under certain stimuli. LLCs thermodynamic stability enables a release of 
the encapsulated drug triggered by stimuli that revert the thermody-
namic stable structure towards an unstable structure, promoting the 
release of the payloads at any given moment [24]. Another possibility is 
to incorporate agents or materials that react to changes in the environ-
ment, such as magnetic fields or pH, obtaining stimuli-sensitive LLCs 
which can experience reversible transformation based on this stimulus 
and releasing the cargo. For example, Salentinig et al. [117] developed a 
pH-reactive cubic LLCs at neutral pH that transitioned to inverse mi-
celles at higher pH and to vesicles at lower pH and protected the pH 
sensitive drug nicergoline. Sun et al. [118] developed LLCs doped in 
their surface with iron oxide nanoparticles to create a system sensitive to 
external magnetic fields (Fig. 4). This platform possessed reversibility 
between an inverted bicontinuous cubic and a HII phases in response to a 
magnetic force and in vitro studies demonstrated the ability to manip-
ulate the release of a drug, alternating between slow and fast release 
depending on the phase in which it was found. 

The most used lipid to make LLCs for drug delivery is GMO, which at 
room temperature has a bicontinuous cubic phase and a laminar phase 
[7]. Other lipids highly used to form LLCs are phytantriol to form cubic 
phases, and andoleyl glycerate or phytanyl glycerate to fabricate hex-
agonal phases [119]. 

In addition, the materials and methodologies used for fabricating 
LLCs are unexpensive. Altogether, lipid LLC systems render suitable drug 
delivery systems that can be administered by different routes which will 
be discussed below [120]. 

In this review, we will highlight the use of LLCs as delivery systems 
for drugs and biomacromolecules, classifying them according to their 

routes of administration. Recent examples of lipid LLCs for such use are 
summarized in Table 3. 

4.1.1. Transdermal/topical administration 
LLCs have been largely used for topical administration [140–148] 

due to the similarities of the cubic conformation of LLCs and the cubical 
architecture of stratum corneum [149]. Additionally, stratum corneum 
lipids have hexagonal and orthorhombic conformations and even form 
LLCs [150,151]. Several drugs like antifungals [146,151–154], antimi-
crobials [146,148], NSAIDs [145,152,155–158], anxiolytics [152] and 
anticancer drugs [146], among others, have been encapsulated in LLCs 
and proved their efficacy. For instance, a gel encapsulating hexagonal 
LLCs carrying zaltoprofen has evidenced its anti-inflammatory efficacy 
reducing the skin inflammation in a rat model [159]. Another inter-
esting application was reported by Thorn et al. who fabricated a mon-
oolein LLCs sensitive to a bacteria enzyme which showed a promising 
suitability for the treatment of topic infections of Pseudomonas aer-
uginosa and Staphylococcus aureus [160]. The antibiotic rifam-
picin or the enzyme alginate lyase were encapsulated into the LLCs, and 
their release was triggered by the presence of bacterial enzyme, being an 
82-fold and a 7-fold release in comparison with the enzyme absence, 
respectively. The release was promoted by the lipase activity which 
transformed the cubic lm3m LLCs to a lamellar construct (Fig. 5A and B), 
from where the molecules can diffuse [160]. 

LLCs can also form supra-amphiphile for the treatment of skin dis-
orders. De Souza et al. developed LLCs supra-amphiphiles incorporating 
oleic or stearic acids and meglumine. Oleic acid LLCs formed hexagonal 
LLCs whereas stearic acid formed lamellar LLCs. Stearic acid LLCs 
rendered highly viscous formulations due to the presence of more stable 
hydrogen bonds suitable for topical administration. On the other side, 

Fig. 4. Drug release of magnetic LLCs under magnetic fields. The drug release 
velocity depends on the presence of magnetic fields. The interaction of the 
platform and an external magnetic field provokes that the cubic system changes 
to HII for the duration of the stimuli, to finally return to cubic. Thus, it is 
observed that the release slows down with the action of this magnetic field and 
returns to fast release after the end of the exposure. Reprinted from Ref. 118 with 
the permission from Elsevier. 
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oleic acid lamellar LLCs showed a higher bioadhesion than the hexag-
onal ones, with the same amount of water. It is believed that the bio-
adhesion is caused by the formation of a film at a specific water 
percentage that interacts with the skin and the water’s skin. This is 
believed to be due to the formation of a non-frozen bound water layer 
that cooperates through hydrogen bonding, increasing bioadhesion. The 
in vivo results in rabbit skin demonstrated that both LLCs types 

containing 60% of water are well tolerated, with no edema or erythema 
observed on rabbits, both at the primary level, with a patch for seven 
days, and at the cumulative level, with an application for 5 days every 
day and then leaving the area occluded for 7 days [161]. 

Lipid LLCs have also been used to enable the transdermal absorption 
of several therapeutics as they can modify the skin permeability. For 
instance, GMO LLCs exerts a lipid disorder at the intercellular skin level 

Table 3 
Recent examples of the use of LLCs for drug delivery by different routes of administration and applications.  

Structure Administration 
route 

Lipid Drug Pharmacological effect Ref 

Cubosomes Oral Phytantriol Cefpodoxime Bitter taste model drug [121] 

Lamellar, cubic phase Topical Monooleic glyceride Pirfenidone 
Healing promotion, scar 
prophylaxis [122] 

LCNPS No studied Monoolein Berberine MCF 7 human breast cancer [123] 
Cubosomes Intravenous GMO Copper acetylacetonate LS174T colorectal cancer cells [124] 
Cubosomes Topical ocular Phytantriol Natamycin Ocular fungal infection [125] 
Hexagonal phase Nasal Oleic acid Donepezil Alzheimer [126] 

QII Transdermal Phytantriol Sinomenine hydrochloride, 
cinnamaldehyde  

[127] 

Hexagonal phase Topical vaginal Phosphatidylcholine; GMO Amphotericin B, Miltefosine Vaginal Candidiasis [128] 
LCNPs No disclosed GMO Resveratrol lysosomal dysfunctions [129] 
Cubosomes Oral GMO Astaxanthin Antioxidant [47] 
LCNPs No-disclosed GMO, oleic acid SN-38 Anti-cancer [130] 
In situ LLCs system Vaginal GMO Sertaconazole nitrate Candidiasis [131] 
Cubosomes Oral GMO Gliclazide Antidiabetic therapy [132] 
hexagonal mesophase depot system Intratumoral GMO Doxorubicin Unresectable solid tumours [133] 
Cubosomes, hexosomes Intravenous Phytantriol Phenytoin Anti-seizure [134] 

Cubosomes, hexosomes No disclosed 
Monoolein, 2-morpholinoethyl 
oleate Fluconazole Antifungal therapy [135] 

LCNPs Topical inner ear GMO Dexamethasone Drug-induced ototoxicity [136] 
Hexosomes, Lα Intravenous docosahexaenoic acid Docosahexaenoic acid Brain cancer [137] 
Inverse hexagonal and Bicontinuous 

cubic phase 
Inhalation GMO, Phytantriol Tobramycin Pulmonari anti-pseudomonal 

antibiotic 
[138] 

Cubosomes Subconjuntival Phytantriol Latanoprost Glaucoma [139]  

Fig. 5. Drug release from LLCs sensitive to enzymes. (A) Non-regioselective action of a bacterial lipase promote the transformation of the LLCs cubic structure into 
lamellar LLC phases, which result in the release of the drug or biomacromolecule inside. (B) The graphs show how the release of rifampicin and alginate lyase 
increases as the sensitive LLC structure is digested. Reprinted from Ref. 160 with the permission from Elsevier. 
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independently of their structure or even whether or not they have 
penetration enhancers [116,162]. Musa et al. developed a gel made of 
reversed hexagonal GMO LLCs for the transdermal administration of the 
anticancer drug exemestane. This formulation reduced the drug side 
effects in comparison with the oral route, and in vivo, this gel increased 
the drug absorption due to an increase of the skin’s permeability the 
hydration of the skin, resulting in an increase in pore size facilitating the 
drug absorption. In this regard, it is believed that there is an intact 
transfer of the drug. This, coupled with the formulations’ ability to kill 
MDA-MB231 cells and a consistent lack of inflammatory infiltrates or 
visible reaction in vivo, demonstrates the effectiveness of this system 
[163]. Further penetration can be acquired with the combination of 
penetration enhancers, such as did Cohen-Avrahami et al., who fabri-
cated HII mesophases from GMOs and the triglyceride trioctanoin 
encapsulating diclofenac sodium. To increase the drug’s cellular pene-
tration, they incorporated the peptide penethrin, which produces 
structural changes on subcutaneous lipids favouring the drug diffusion. 
Pigskin trials showed that this platform increased the permeability co-
efficient 2.2 times thanks to the peptide, compared to systems that do 
not contain this enhancer [164]. 

4.1.2. Mucosal administration 
LLCs’ mucoadhesivity is given by their composition and their liquid- 

crystalline structure. For example, GMO LLCs possess mucoadhesion 
properties due to its ability to absorb water from the environment. 
Indeed, the longer the exposure time, the greater the mucoadhesion. 
Interestingly, the lamellar phase of GMO had a higher mucoadhesivity 
than the cubic phase, caused by the capture of water of this structure to 
transition to a cubic phase, whereas cubic phase has a constant amount 
of water in its interior [165]. Therefore, these results indicate that their 
mucoadhesivity is promoted by dehydrating the medium as well as from 
Van der Waals bonds and hydrogen bonds [166]. GMO mucoadhesive 
properties and its biodegradability and biocompatibility has expanded 
its use to treat buccal infections [167]. 

Many other LLCs types have shown mucoadhesive properties and 
have shown its efficacy targeting oral mucosa. Vesicles of phytantriol 
and oleic acid could transition to hexosomes at the pH of the oral mucosa 
(pH 7) due to the presence of oleic acid (Fig. 6A). Ex vivo studies carried 
out on porcine buccal mucosa showed a better hexosomes’s bioadhesion 
and mucosal permanence than control vesicles. This shows the prom-
ising utility of drug delivery by this route [168], as it avoids the first pass 
hepatic effect and the gastrointestinal degradation [169]. Another lipid 

Fig. 6. (A) This diagram shows how the vesicles formed by the lipids phytantriol and oleic acid go on to form liquid crystals when the pH changes. The pH of the oral 
mucosa transforms the vesicles into hexosomes. Reprinted from Ref. 168 with the permission from Elsevier. (B) b1) A comparative study compared the empty LCNP 
system, docetaxel-loaded LCNP and the commercial taxotere system. For these, a tumour was induced in mice and the formulations were injected after measuring the 
tumours. Over time, tumour growth/decline was observed for each treatment group. The drug-treated groups showed a decrease in tumour size, demonstrating that 
the LCNP-loaded formulation possessed anti-tumour capacity. b2) The next study pitted the commercial formulation Taxotere against the loaded LCNP system and 
followed the same procedure of measuring tumour size after intravenous injection of the two formulations. The results of the first study were also used for the 
scheme. A greater decrease in mean tumour size was observed with the docetaxel LCNP formulation than with the commercial formulation, thus proving to be more 
effective. Reprinted from Ref. 172 with the permission from Elsevier. 
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with mucoadhesive properties is glyceryl monolinoleate [170]. Jie et al. 
developed a delivery system encapsulating sinomenine hydrochloride, a 
drug with anti-cancer properties. The system was administered as in situ 
LLC gel, which, on contact with the vaginal fluid, is transformed into a 
gel with cubic LLCs, which sustained the release for 144 h in vitro. 
Histopathological studies performed on rats evidenced its safety for the 
vaginal mucosa. All this, together with a mucosae permanence time of 
more than 12 h in vivo, makes this a promising system for administering 
drugs at the vaginal level [171]. 

LLCs have also been used for topical-ocular administration 
[173,174]. Li and co-workers manufactured GMO LLC nanoparticles, 
with reverse hexagonal phases, loaded with the anti-glaucoma pilocar-
pine nitrate, a molecule with a low ocular penetration and retention. A 
comparative study was made with commercial eye drops and showed an 
improvement in eye penetration with the use of the LLCs. Moreover, this 
platform showed in vivo an extended reduction in intraocular pressure 
compared to the commercial drug. Low eye irritation was also observed, 
making it a promising platform for eye administration [173]. 

The nasal mucosa is another possible route of administration of 
active substances. Carvalho et al. developed a LLC precursor formulation 
loaded with the antiretroviral zidovudine that transitioned to a lamellar 
phase in the nasal mucosa, promoting nasal absorption of the payloads. 
This transition tripled the mucoadhesivity of the system, as demon-
strated ex vivo in porcine nasal mucosa and increased the permeability of 
the drug in comparison with a solution of zidovudine. In vivo, in a rat 
model, a rapid absorption by the nasal system was observed [175]. 

4.1.3. Parental administration 
This type of administration encompasses intravenous, subcutaneous, 

intramuscular, intra-articular, intravitreal and intralesional [176]. LLCs 
can be administered by themselves or in formulations that form implants 
of LLCs. Streck et al. developed benznidazole formulations for Chagas 
disease based on soy phosphatidylcholine and medium chain tri-
glycerides, and it was found out that at certain proportions of both lipid 
components lamellar LLCs were formed instead of nanoemulsion. These 
LLCs formulation increased the drug’s loading compared to conven-
tional emulsions and cyclodextrin complexes. It was also observed that 
when LLCs were formed at a low surfactant-to-oil ratio were not cyto-
toxic whereas formulations at higher ratio were cytotoxic. Nevertheless, 
future studies are needed to determine their effectiveness in vivo and the 
most suitable route of administration, whether oral or parenteral [177]. 
LLCs have also been intravenous administered for the treatment of 
cancer. LLC nanoparticles (LCNPs) carrying docetaxel showed their ef-
ficacy against prostate cancer in vivo. The soy phosphatidylcholine- 
based system showed a greater tumour regression than the commer-
cial formulation Taxotere (Fig. 6B). Therefore, the inclusion of this drug 
within the carrier enables a higher penetration into the tumour [172]. 
However, some authors have suggested the possible ineffectiveness of 
GMO-based LCNPs for parenteral administration, due to massive hae-
molysis observed in in vitro assays due to mixing with the phospholipid 
membrane by the GMO [178]. This problem is not reported in more 
recent studies [179], so it is not known whether its haemolytic effects 
have not been considered or whether haemolysis has not manifested 
itself. Therefore, a more thorough review would be appropriate to avoid 
any confusion in the future. 

The intra-articular route is also one possibility for administering 
LLCs. This is the case of cubic LLCs precursors which will absorb water 
progressively once it enters intramuscular or subcutaneous into the 
human body. This water comes from peripheral tissues or from body 
fluids and it is the responsible for the transformation of the precursor in 
LLC which will act as a reservoir and release the drug. Xia et al. tested 
this system with sinomenine hydrochloride, as a model drug, and GMO/ 
water for the treatment of rheumatoid arthritis in a rat model. It was 
injected into the rat’s leg joint cavity and a comparative study was made 
with an injection of aqueous sinomenine hydrochloride solution. Plasma 
levels showed prolonged release from the developed formulation as 

opposed to the aqueous solution. Indeed, the maximum concentration 
was reached after 15 h in the LLCs in the joint cavity, demonstrating the 
local effect of the drug and proving the appropriateness of the formu-
lation to treat any joint disease [180]. 

Fong et al. developed a phytantriol and gold-based photothermal 
system capable of responding to near-infrared light. Ex vivo studies 
showed that depending on skin thickness, and the presence or absence of 
hair and pigmentation, the effectiveness of near infrared light would 
vary, being the abdominal skin the best choice for their administration 
despite the latter being thinner, perhaps due to its lipid composition. In 
vivo studies were then carried out using [14]C-glucose as a model drug. 
A comparative study was carried out between different phytantriol- 
based formulations, one of them containing gold, and compared with 
an aqueous glucose solution (control). After administration, they were 
subjected to 2 h of near-infrared light, followed by ambient light. LLCs 
containing gold showed were able to increase the plasma concentrations 
after near-infrared light exposure due to a transition from HII to VII. This 
results evidence that some LLCs can respond to stimuli under in vivo 
conditions [181]. Similar systems have been developed for parenteral 
application, such as those capable of reacting to changes in temperature 
[182]. 

Fang et al. developed an isotropic solution that converted to a liquid- 
crystalline gel in situ to release 5-Fluorouracil while acting as an 
embolus, thereby stopping the blood supply to provoke the cell 
apoptosis. The formulation was formed by phytantriol, and it was 
observed that higher proportion of phytantriol achieved the desired 
embolization. In vitro cytotoxicity tests showed that the formulations 
were cytocompatible. In vivo experiments in rabbits confirmed the 
embolization of the middle ear artery and a longer mean residence time 
compared to the drug solution. These findings indicate that phytantriol- 
based system could be a promising system for the treatment of hepato-
cellular carcinoma, specifically as a transcatheter arterial chemo-
embolization agent [183]. 

4.1.4. Oral administration 
LLCs have also been formulated for the oral administration of drugs 

[166,184–189]. Lipid vehicles keep the drug solubilized even during 
digestion. In addition, the preservation of the unchanged liquid crys-
talline structure of phytantriol and GMO in the gastrointestinal model 
fluids suggests a slow gastrointestinal release capacity. All these char-
acteristics make lipidic LLCs interesting platforms for oral administra-
tion [185]. For example, Nguyen et al. developed hexosomes for the oral 
administration of cinnarizine, based on glyceryl monooleyl ether, which 
is not digestible in the stomach, thus protecting the active substance. 
This result was confirmed with an in vitro enzymatic digestion that 
showed no drug degradation. An in vivo study conducted on rats 
comparing hexosomes of cinnarizine, a bulk formulation of glyceryl 
monooleyl ether and the active substance administered orally showed 
that the hexosomes achieved more consistent absorption and plasma 
concentrations in the first 28 h. This study demonstrated the usefulness 
of liquid-crystalline materials, such as glyceryl monooleyl ether, which 
are not digested, for the sustained oral administration of active sub-
stances [166]. 

Cubic LLCs have also been used for improving the efficiency of hy-
drophobic/hydrophilic therapeutics [190–192]. For instance, Pham and 
co-workers developed an in situ cubic LLCs formulation to increase the 
gastric retention and sustain the release of hydrophobic drugs. They 
encapsulate a model drug, cinnarizine, in a phytantriol and tributyrin 
mixture, which formed cubic LLCs during digestion. These findings open 
a new window for the sustained oral release of hydrophobic drugs [193]. 

The inclusion of linoleic acid into the LLCs enable the development 
of pH-sensitive LLCs [194]. Linoleic acid has a pKa of approximately 5, 
being protonated at acid pH and with negative charge at neutral pH, 
modifying the LLCs critical packing parameter depending on the pH. For 
instance, pH-sensitive LLCs made of bymonolinolein and linoleic acid 
developed by Negrini and colleagues can change from a cubic to 
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hexagonal phase when switching the pH from neutral to acid (pH 2), 
returning to a cubic phase again when returning to neutral pH, reca-
pitulating the intestine and stomach pH respectively. A model hydro-
philic drug, phloroglucinol, was encapsulated inside this platform to test 
the effect of the pH in the release. It was founded out that the release was 
4 times faster for cubic conformation than the hexagonal one, being 
ideal for intestinal delivery preventing stomach release [194]. 

Anti-cancer drugs were also encapsulated in LLCs for oral adminis-
tration. For example, Waghule et al. used LCNPs to encapsulate temo-
zolomide (TMZ) for the treatment of glioblastoma. In this case, LCNPs 
protected the drug from the degradation by the plasma pH, resulting in a 
prolongation of the brain bioavailability, reducing the dosages and 
toxicities not associated with the therapeutic target. Related to lipo-
somes, the LCNPs showed longer release as well as smaller size and 
better entrapment [189]. 

4.1.5. Other routes of administration 

4.1.5.1. Periodontal injection. This route of administration is essential 
for the treatment of periodontitis, inflammatory diseases of the tissue 
that supports the teeth. Over time it can lead to tooth loss. It is caused by 
a multifactorial infection and therefore one of the possible treatments is 
the use of antimicrobials. Due to the appearance of periodontal pockets 
as a pathological manifestation, periodontal injection and its various 
formulations have emerged as a possible treatment [195]. For example, 
the phytantriol-based platform for periodontal administration, devel-
oped by Jiang et al. was an injectable system against chronic peri-
odontitis, as it contained minocycline hydrochloride. The system, based 
on reversed hexagonal in situ LLCs, demonstrated higher cumulative 
releases. Studies on specific pathogen free rats showed it to be an 
effective system in comparison with the commercially available treat-
ment, Periocline ® [196]. 

4.1.5.2. Inhalation. The inhalation administration is a non-invasive 
technique unlike systemic administration and can avoid the draw-
backs of systemic administration. In the case of anticancer drugs, oral 
and intravenous administration are accompanied by high accumulation 
in the kidneys, liver and spleen and low accumulation in lungs. Attempts 
to administer higher doses result in serious adverse effects and even the 
development of multidrug-resistant tumours. Inhalation administration 
localises the action and limits adverse effects [197]. Abdelaziz et al. 
developed an inhalable monoolein formulation to treat noninvasive lung 
cancer. LLCs encapsulating resveratrol and anti-cancer drug pemetrexed 
were coated by chondroitin sulfate and lactoferrin through layer-by- 

layer technique. This coating enables the tumour-targeting to cells 
overexpressing CD44 (chondroitin sulfate) as well as possessing anti- 
cancer properties (lactoferrin). Nanoparticles were then encapsulated 
inside microparticles to obtain inhalable particles and showed a lung 
deposition in in vivo experiments with mice. These carriers provoked a 
reduction in the tumour size, reduction in the vascular endothelial 
growth factor (VEGF) expression and activation of caspase-3, suggesting 
to be suitable for non-invasive treatment of lung cancer in addition to 
not causing functional damage to the liver and kidneys [198]. More in 
vivo studies will determine whether LLCs can really be an improvement 
in this route of administration over other existing formulations. 

4.2. Biomacromolecules delivery 

LLCs have also being used for the encapsulation of bio-
macromolecules such as peptides [145,146,199] or proteins [146,200] 
(Table 4). 

4.2.1. Nucleic acids 
One type of biomacromolecule where lipid LLCs have been success-

fully applied is nucleic acids [201]. An interesting approach consists of 
the encapsulation of synthetic interference RNA (siRNA). There is a 
therapy that consists of the gene suppression or silencing of specific 
sequences using interference RNA therapy using double-stranded RNA 
or siRNA [202]. This therapeutic strategy has been already shown its 
effectiveness against cancer or viral infections [203]. However, the main 
limitation of this technology is its high molecular weight and negative 
charges that hinders its entry through the cell membrane [204], 
requiring the use of viral and non-viral vectors with high costs and 
immunogenic problems. LLCs can enhance the efficacy of siRNA by 
release free siRNA directly into the cytoplasm upon dissociation of free 
siRNA from LLCs due to fusion of the latter with the membrane [205]. 
For instance, GMO nanodispersions have been used for the topical 
treatment of vitiligo [206]. Vitiligo, depigmentation due to melanocyte 
loss, is thought to be caused by autoimmunity against Tyrosinase-related 
protein-1 (TyRP-1), a melanocyte surface protein that is thought to 
behave as an antigen in those suffering from this disease. In this case, 
siRNA against TyRP-1 was encapsulated in the LLCs. To complex the 
siRNA, a cationic polymer, branched poly(ethyleneimine) (PEI) was 
used which, due to its positive charge, retained the negatively charged 
siRNA. This formulation showed that siRNA could reach the cytoplasm 
of melan-A cells and inhibit the expression of TyRP-1 unlike naked 
siRNA [207]. Another example are the LCNPs that have been complexed 
with short-interfering RNAs (siRNAs) and functionalized with cell 

Table 4 
Recent examples of the use of liquid crystals for the delivery of biomacromolecules.  

Structure Administration 
route 

Lipid Biomacromolecule Use Ref 

Reverse hexagonal 
structure Topical GMO siRNA Skin diseases [215] 

Cubosomes Unexplored GMO siRNA Gene therapy [216] 

Cubosomes Unexplored GMO Neurotrophin brain-derived 
neurotrophic factor 

Neuroprotective [217] 

LCNPs Unexplored GMO, Phytantriol Glycoside hydrolase Infection-directed therapy [218] 

Lamellar 
Vaginal 
administration Oleic acid Ergosterol (D2 vitamin) 

Vulvovaginal candidiasis by 
Candida albicans [219] 

Bicontinuous- cubic Unexplored 
Lipidic zinc (II)-bis(dipicolylamine) (Zn2BDPA)) 
complexes admixed with GMO siRNA RNA therapeutic delivery [220] 

Cubic Topical skin GMO Recombinant human epidermal 
growth factor (rhEGF) 

Chronic wound [221] 

Lipid sponge (l3) 
phase 

Unexplored GMO, diglycerolmonooleate (DGMO) Aspartic Protease Unexplored [222] 

Cubosomes Oral GMO Coenzyme Q10 Hepatoprotective [223] 
Lamellar Topical skin L-α-phosphatidylcholine, glycerol trioleate Lysozyme Unexplored [224] 
Hexagonal phases, 

cubic phases Intratumoral GMO siRNA 
Promising anticancer 
platform [225] 

Cubic IA3D Transcutaneous Monolinolein, GMO Peptid antigen Transcutaneous vaccination [226]  
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penetration peptides (TAT or penetratin) by Petrilli et al. The hexagonal 
phase LCNPs encapsulating siRNA for inhibiting tumour necrosis factor 
α (TNF-α) and decorated with TAT have shown a reduction in the 
expression of the pro-inflammatory cytokine TNF-α in rabbit and mouse 
models of inflammatory disease. The results obtained indicate that TAT 
decorated LCNPs can improve the internalization of these NPs, improve 
the cellular uptake of the siRNA, without irritating the skin [201]. These 
findings suggest that LLCs could be an interesting approach for RNA 
delivery in vaccines or the treatment of diseases such as chronic in-
flammatory diseases or cancer. Another alternative that is beginning to 
be explored is the use of double-stranded DNA, with results that seem to 
indicate that these structures do not undergo structural modifications 
inside liquid-crystalline structures [208], although there is still much 
research to be done on the possibilities of LLCs in gene therapy. 

4.2.2. Proteins 
LLCs have also proved their efficacy for the delivery of proteins. Ki 

et al. developed an injectable LC-forming system based on phosphati-
dylcholine and loaded with leuprolide acetate, an hormone analogue 
which is used subcutaneously against prostate cancer. In vitro assay 
showed higher IC50 for the LLC formulation than the drug commercial 
formulation, indicating its safety. In vivo studies in rabbits and rats also 
confirmed LLCs safety of LLCs, as no lesions were found (Fig. 7A). The 
formulation was transforming into hexagonal LCs when subcutaneous 
administered due to the presence of local water. This transformation 
allowed that there was no initial burst release of the payloads in 

comparison with commercial poly (lactic-coglycolic acid)-based 
formulation, as demonstrated in pharmacokinetic studies on rats 
(Fig. 7B) and beagles (Fig. 7B), without changing its therapeutic effect. 
Although there were no major differences in release over time, except 
for the burst release of the commercial formulation and therefore a 
higher maximum concentration, the ease of preparation is a great 
advantage over the commercial formulation, as it is only a mixture and 
dissolution, thus proving to be very useful [209]. 

There are many other examples of attempts to introduce proteins into 
LLCs. VEGF was incorporated into a GMO precursor solution which, in 
contact with liquid, forms a self-assembled gel of bicontinuous cubic 
inverse LLCs to regenerate the vasculature of lesions. VEGF when free in 
the blood, has a short half-life, however, when encapsulated in this 
platform, it prolonged its half-life due to the sustained release capacity 
of the LLCs for 7 days. In addition, the gel form allows it to completely 
occupy the lesion, making it a promising system. LLCs showed a higher 
tube formation and cell migration than free VEGF on human umbilical 
vein endothelial cells (HUVECs), suggesting a better angiogenic poten-
tial of LLCs. In addition, VEGF-LLC when injected subcutaneously into 
rats caused a mild inflammatory response that spontaneously reversed 
and did not cause damage to vital organs after 14 days of treatment but 
did show a higher angiogenic capacity of the system when compared to 
the same but empty LLCs, as more and larger diameter blood vessels 
were observed in the VEGF-LLC [210]. LLCs also allows to encapsulate 
proteins under mild conditions, avoiding the harsh conditions that 
might occur in other delivery platforms. For instance, Chung and 

Fig. 7. Injectable LLC precursor forming 
LLCs made of phosphatidylcholine and the 
hormone analogue leuprolide acetate. (A) 
Safety of the formulation in rats and rabbits. 
From left to right, LLCs formed after sub-
cutaneous administration and the tissues 
around them in rats and rabbits, respec-
tively, over 7, 14 and 28 days. (B) Plasma 
concentrations over time of leuprolide in 
rats (left) and beagles (right) after subcu-
taneous injection of the commercial 
formulation of PLGA vs LLCs (LCFS). 
Reprinted from Ref. 209 with the permission 
from Elsevier.   
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colleagues fabricated cubic LLCs encapsulating insulin, avoiding the use 
of high temperature that could damage the protein integrity. This LLCs 
formulation was able to control the glucose levels in diabetic rats, 
maintaining the insulin levels in serum above the baseline up to 6 h 
[211]. 

Antibodies have also been introduced into LLCs. Zhai et al. devel-
oped LCNPs against the epidermal growth factor receptor (EGFR). This 
NPs had an internal LLC structure, thus possessing cell penetration and 
drug loading capacity inside. On their surface they had conjugated anti- 
EGFR Fab fragments retaining their activity and a poly(ethylene glycol) 
corona to avoid the recognition by the immune system. The efficacy of 
the conjugation was assessed by a competitive binding assay to 
sEGFR501.Fc, a protein with high affinity to anti-EGFR ligands, showing 
high affinity [212]. Lipid LLCs have even proved to be an effective 
system for producing vaccines, by encapsulating antigens into them. 
Sánchez Vallecillo et al. showed that LLCs system modulated the antigen 
release kinetics as well as the interaction between the system and the 
immune system. The formulation of LLCs with a lamellar structure was 
formed by 6-O-ascorbyl palmitate (ASC16) which self-assembled due to 
cooling in water, called Coa-ASC16 (or coagel). The coagel is detected 
by innate immunity through the MyD88 protein [213], without the need 
of any immunoadjuvant. Thus, altering inflammatory activity itself and 
being a valid system for the development of vaccines [214]. 

4.3. Imaging carriers 

LCs have been successfully used in cellular and molecular imaging, as 
imaging agents can be easily encapsulated in LLCs. Some examples of 
interest are listed in Table 5. Within medical imaging, one field that LLCs 
have a great potential is magnetic resonance imaging (MRI). This non- 
invasive technique generally requires the use of contrast agents to 
improve its sensitivity. Imaging agents can undergo changes in their 
performance in lipid environments, so they need to be assessed to 
stablish the optimal charge [227], measuring its relaxivity which is their 
relaxation of water normalized to the concentration of the contrast agent 
[228,229] and indicates the effectiveness of these agents [11,228]. 
Among contrast agents, positive charged agents that change T1 (para-
magnetic gadolinium (Gd), manganese II (Mn)…) and negative charged 
that change T2 (nanomaterials based on superparamagnetic iron oxide) 
can be introduced into LLCs. Cubosomes are of great interest for MRI 
application because their bicontinuous cubic structure facilitate the 
coordination of water molecules around the metal ion. They can also 
facilitate the transferring of water molecules that provokes an increase 
in the rate of relaxation, as well as prevent some rotation movements of 
the metallic ions. This will change the water conditions to which the 
contrast agent is subjected [228]. 

Paramagnetic Gd and Mn ions are the most used for clinical MRI 

[35], and they have introduced in LLCs such as lamellar [230,231], 
hexagonal [232], reverse hexagonal [231], micellar cubic [231]. Today, 
chelated Gd is usually one of the components of contrast agents, but as a 
free trivalent ion it is highly toxic [11,35,228,233]. Gd was subjected to 
different chelation processes with phytantyl-ethylenediaminetetraacetic 
acid (EDTA) derivatives and diethylenetriaminepentaacetic acid (DTPA) 
can be later incorporated into systems formed by GMO and phytantriol 
[228]. An example of this was reported by Gupta et al. Researchers 
developed cubosomes based on Gd (III) and GMO chelated DTPA. LLCs 
formulations had higher relaxivities than Magnevist, a commercial 
contrast agent [234]. 

As discussed above, the use of paramagnetic NPs, such as iron oxide 
NPs, is also a common practice when using them as contrast agents, and 
they have also been locked into cubosomes [228]. Sun et al. developed a 
phytantriol-based lipid LLCs loaded with iron oxide NPs and sodium 
fluorescein as a model drug. In in vitro studies, an alternating magnetic 
field was applied after 1 h to start releasing the drug and its action was 
maintained for 2 h. A decay of the release due to the alternating mag-
netic field was observed, which is believed to be due to a transition from 
V2 to V2/H2 (mixed), with respect to the control, without iron oxide 
nanoparticles. Thus, it was possible to obtain a system able to react and 
decrease its release rate to external magnetic forces and to return to a 
fast release state when these forces disappear. It appears to be a prom-
ising platform for programmable release/imaging [118]. 

Using metal-free nitroxide lipid contrast agent systems, also para-
magnetic [11,228,229], is unconventional [228]. Muir et al. used this 
system, introducing these contrast agents into lyotropic LCNPs, based 
either on GMO (Myverol®) or on phytantriol. The relaxivity study 
showed an improvement in T1, compared to substances in clinical use, 
such as omniscan, which contains Gd. In vitro toxicity tests on Chinese 
hamster ovaries, as well as subsequent pharmacokinetic tests on rats 
(Fig. 8A), showed a longer half-life and lower toxicity of the GMO- 
formed systems. In addition, the GMO-formulated system showed 
effectiveness at the hepatic level in rats without the use of Gd (Fig. 8B), 
which as previously discussed is toxic. It was observed that the more the 
concentration of nitroxide was increased, the conformation changed 
from cubic to hexagonal (Fig. 8C), resulting in a detrimental effect on 
relaxivity [229]. 

All these finding suggest that LLCs are promising platforms for high 
field contrast agent’s encapsulation as well as showing possibilities as a 
delivery agent, thus could be powerful theragnostic agents. 

Lipid LLCs have also been used for fluorescence imaging. This 
technique is unexpensive, safe, accurate and allow detection of early 
stages cancer [245]. It is based on the ability of some compounds, known 
as fluorophores, to emit light at longer wavelengths, which they had 
previously absorbed [246]. Within this field, Aggregation-Induced 
Emission (AIE), which is based on the formation of aggregates to 

Table 5 
Lipid platforms LLCs as carriers for imaging agents and theragnostic agents.  

Structure Administration 
route 

Lipid Detection substance Use Ref 

inverse bicontinuous cubic 
mesophase Unexplored GMO Carbon nanodots Fluorescence imaging [235] 

HII Intravenous Phytantriol MnO nanoparticles 
Breast cancer Fluorescence imaging 
and tratment 

[236] 

Hexosomes (HII) Subcutaneously Phytantriol, Oleic 
acid 

Technetium-99 m [99 m Tc]-labeled Regional lymph node theragnostic 
agent 

[237] 

cubosome No studied GMO DPP-ZnP-NH2 Theragnostic for cancer (fluorescent) [238] 
cubosomes Unexplored GMO NaYF4, Er3+, Yb3+ Theragnostic for cancer (fluorescent [239] 

Not disclosed Unexplored Cholesterol 
3,3′-dioctadecyloxacarbocyanine perchlorate 
(DiO) Fluorescence imaging [240] 

Not disclosed Unexplored Cholesterol Samarium (III) Fluorescent imaging [241] 
Reverse hexagonal Unexplored GMO Rhodamine (+ docetaxel) Theragnostic for cancer (fluorescent) [242] 
Cubosomes Unexplored GMO Rhodamine (+ Docetaxel) Theragnostic for cancer (fluorescent) [243] 

Cubosomes, hexosomes Intravenous GMO, capric acid Gadolinium, lipophilic near infrared 
fluorescent 

MRI and fluorescent imaging [244]  

G. Blanco-Fernández et al.                                                                                                                                                                                                                    



Advances in Colloid and Interface Science 313 (2023) 102867

13

increase light emission, has emerged relatively recently [247]. Agents 
with AIE properties do not have problems such as cytotoxicity and low 
photostability that inorganic contrast agents have. This type of agents 
have been incorporated into lipid LLCs systems, such as GMO-based 
hexagonal LCNPs. Urandur et al. used this platform as a theragnostic 
agent for breast cancer. LLCs were loaded with tetraphenylethane (TPE), 
an optical AIE beacon and an anti-cancer phytoestrogen, formononetin 
(FMN). The LCCs were also coated with anisamide (AA), to target the 
sigma receptor of cancer cells. 

The formulation was hemocompatibility and safe in vitro and in vivo, 
allowing its intravenous administration. LLCs decorated with AA 
enhanced the anticancer activity and cell uptake in cancer cells and did 
not affect normal cells in comparison with the free drug and non- 
decorated LLCs encapsulating FMN. In vivo experiments in mice also 
confirmed the higher efficacy of AA-decorated LLCs, thus showing its 
potential use as a theragnostic agent in breast cancer [245]. 

4.4. Tissue engineering 

The reversible transformations and flexibility of the lipidic LLCs as 
well as their biocompatibility and the possibility to encapsulate bio-
macromolecules inside them, make them suitable materials to fabricate 
scaffolds (Table 6). In addition, they can react to different external 
stimulus, and they allow anisotropic growth, informing about the cell 
growth thanks to birefringence or liquid-crystalline molecular align-
ment [248,249]. LLCs scaffolds can be fabricated by electrospinning and 
3D-printing among others [250], and have been mainly used in skin 
regeneration due to the similarities of LLCs with the lipids of the stratum 
corneum. For instance, Soon et al. developed a cholesterol ester-based 
LLCs for the fabrication of skin grafts using human keratinocytes 
(HaCaTs). The extracellular space of the stratum corneum presents 
cholesteryl ester varying from 0 to 20% [251], which can be transformed 
into cholesterol by hydrolysis, and it is used for the formation of 

Fig. 8. GMO (Myverol®) or phytantriol LLCs containing nitroxide lipids contrast agent. (A) Time decays of phytantriol and Myverol LLCs containing 8% and 15% 
pluronic F127 after intravenous injection into rats (0,5 mCi 3H-dioleilfosfatidilcholine was the radioactive tracer. (B) Rat liver before (top) and after (down) 
intravenous injection of GMO LLCs hexosomes (14.5% nitroxide lipids). (C) Cryo-TEM images of cubosomes (2% nitroxidised lipids) and hexosomes (14.5% 
nitroxidised lipids). Reprinted from Ref. 229 with the permission from Elsevier. 
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lipoproteins and for the cell membrane [252]. The scaffold allowed the 
organization of keratinocytes into 3D microtissues with a good cell 
adhesion, cell viability and proliferation after 20 days and even showed 
cell migration within the scaffold. The main advantage of these 3D 
platform is that it preserved the native function of the cells, forming 
stratified keratino-spheroids and it is suitable for studying cell migra-
tions [252]. 

LLCs have also been used in the field of bone tissue engineering. LLCs 
based on cholesterol chloroformate were introduced into a polyurethane 
based porous scaffold by means of a soaking swell technique. Poly-
urethane provides elasticity, which is important for bone regeneration, 
while LLCs improve its osteogenic capacity. The scaffold high porosity 
and high pore size favored the bone growth. Human mesenchymal stem 
cells (hMSCs) showed good cellular adhesion without cytotoxicity in 
these scaffolds. The presence of LLCs in the scaffolds increased the cell 
growth and adhesion of hMSCs was observed when LLCs were present in 
the scaffolds. In addition, an increase in the alkaline phosphatase ac-
tivity, calcium deposits formation and gene expression related with 
hMSCs differentiation was observed, which confirmed the cell differ-
entiation onto osteoblast [253]. 

4.5. Other biomedical uses 

Lipidic LLCs have also been used for the creation of platforms against 
post-operative adhesion. For example, Murakami et al. developed a 
platform made of squalene and C17 glycerin ester and tested it against 
lateral lesions in the peritoneum of rats and its effectiveness was com-
parable with Seprafilm®, a system already marketed for the same pur-
pose. The incorporation of squalene into the LLCs promotes the 
transition from cubosomes to hexosomes and provides greater stability 
to the dispersion. The tissue postoperative adhesion was reduced by 
77.6% with the higher lipid percentage formulations (21 and 25%), and 
35.0% with Seprafilm® against untreated lesions. It is believed that the 
adhesion of the hexosome is due to the hydrophobic chains around it. 
Although further research of the biocompatibility and metabolism of 
C17 glycerin ester is needed, these results are promising for preventing 

postoperative adhesion [262]. 

4.6. Limitations in biomedicine of lipid LLCs 

The research in nanocarriers as drug delivery systems is continuously 
growing, being even some examples authorized by regulatory agencies. 
However, there is still no LLCs-based nanocarrier close to be used in 
patients. One of the reasons is that most of the NPs based on LLCs tend to 
lead to rapid release, especially when dealing with small molecules. 
Therefore, dispersed phases of LCs (cubosomes and hexosomes) have a 
much higher release rate of small water-soluble drugs than non- 
dispersed ones, due to the shorter diffusion distances of the molecules 
[263]. This phenomenon can be overcome in the case of small fat- 
soluble drugs and proteins, where normally a slow and sustained 
release can be achieved due to interaction with hydrophobic domains 
and the absence of the partition coefficient effect, respectively [263]. 
Nevertheless, proteins are in general not suitable payloads for LLCs due 
to high temperatures needed for the fabrication of the formulation. 
Interestingly, some metals can form tight bounds with LLCs, such as 
gadolinium in cubosomes. This property makes LCs optimal platforms 
for imaging applications, due to the stability of the contrast agents 
[264]. 

Another limitation of LLCs is their biocompatibility. Some studies 
have suggested that cubosomes need a stabilizing polymeric barrier, 
such as Pluronic F127, to ensure low cytotoxicity. However, it is not yet 
known why their cytotoxicity is reduced [265]. Despite being Pluronic 
F127 the gold standard in cubosomes stabilization, it has been evidenced 
that it does not have the capacity to preserve the integrity of the LCs in 
long-term. Indeed, molecules such as 1,2-distearoyl-sn-glycero-3-phos-
phoethanolamine conjugated with poly(ethylene glycol) (DSPE- 
PEGMW) have shown lower toxicity than Pluronic F127 [266]. Resul-
tantly, efforts are underway to develop new stabilizers for lipid LLC 
systems [267]. Perhaps for all these reasons, it would be of interest to 
continue with the study of bulk phases in those cases where nano-
particles do not seem to provide advantages in drug release, whenever 
possible. 

Regarding the use of LCs in tissue engineering, lipid LLCs scaffolds 
offer multiple advantages in skin regeneration, such as its safety, 
biocompatibility and biodegradability, or shapes and pattern versatility. 
Indeed, they can be adaptable to cell growth and act as adaptive scaf-
folds [268]. However, this is a new area with only few examples pub-
lished, and only time and future studies will show their limitations in 
this area. 

5. Conclusions and future perspectives 

Throughout this review, the main biomedical applications of lipid- 
based LLCs have been discussed. Lipidic LLCs have evidenced to be 
optimal platforms for drug and biomacromolecules delivery, scaffolds, 
imaging carriers and even for cell therapy. The main biomaterials used 
for the fabrication of LLCs in this field are GMO and phytantriol, maybe 
because these materials have already been the subject of many drug 
delivery studies and toxicological tests. However, studies suggest that 
GMO has a short-term storage stability due to hydrolysis and/or 
oxidation processes in its structure whereas phytantriol is prone to cause 
haemolysis [45], which is why recently new biomaterials have been 
formulated in LLCs, especially those lipids naturally present in biological 
systems, to find out a greater biocompatibility and stability. 

Top-down and bottom-up methods can be followed to prepare lipid 
LLCs. Top-down are generally faster, but they can only be used with 
payloads that are not sensitive with temperature and in small scale [45]. 
On the other side, in the bottom-up approach is more suitable to 
encapsulate thermos-sensitive payloads and at larger scales, but it gen-
erates solvent residues, and the LCs size is less controllable [45]. 
Therefore, the method followed for the preparation of the LCs should be 
selected according to the properties of the encapsulant. 

Table 6 
Multi-purpose scaffolds made from lipid LLCs. LCEs refers to liquid crystal 
elastomers.  

Scaffold type LC type Lipid Aplication Reference 

LC films Not 
disclosed 

Cholesteryl- 
oligo (lactic 
acid) 

Tissue regeneration [254] 

LCE foams Smectic-A Cholesterol Neural regeneration 
(SH-SY5Y 
neuroblastoma cells) 

[255] 

LCE foams Smectic-A 
phase 

Cholesterol Neuronal growth 
(SH-SY5Y) 

[256] 

LCE 
scaffolds 
and foams 

Not 
disclosed 

Cholesterol Vascularization of 
tissues (resembles 
vascular networks 
observed in tissue) 

[257] 

LCE Smectic-A Cholesterol Scaffolds for human 
myoblast (C2C12) 
and human 
neuroblastoma (SH- 
Sy5Y) 

[258] 

LCE Smectic-A Cholesterol Scaffold for human 
dermal fibroblast 
and mouse skeletal 
myoblasts (C2C12) 
culture 

[259] 

Biomimetic 
scaffold 

Hexagonal 
to cubic 
phases 

GMO Cartilage defect 
regeneration 

[260] 

LLCs Lamellar 
and cubic 
phases 

GMO Cardiac tissue 
regeneration 

[261]  
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Lipid LLCs exhibit a wide structural diversity, and it needs to be 
considered when designing delivery platforms. Therefore, differences in 
structure are responsible for the physicochemical properties and 
behavior of the LLCs. For example, hexagonal and lamellar phase, can 
encapsulate biomacromolecules, possess high loading capacity, and high 
in vivo stability. On the other hand, cubic phases show higher stiffness 
than the other phases, they are easy to preparate, but when they are 
dispersed in water (cubosomes) they cannot sustain the release of water- 
soluble active ingredients [269]. In some cases, super-swollen struc-
tures, which are those with wider water channels, must be used for the 
delivery of biomacromolecules [44]. For this reason, the structure of the 
LLCs must also take into consideration when designing platforms for 
biomedical applications. 

The authors of this review consider that the future of lipid LLCs will 
be dominated by platforms that respond to changes in the environment, 
such as those sensitive to pH or magnetic fields. This stimuli-sensitivity 
ensures the design of platforms with a programmed release, as well as 
Pulsatile Drug Delivery Systems, which enables an intelligent release 
dependent on internal stimuli. Perhaps more novel lines of research are 
also possible, such as chronotherapeutics [270], i.e. treatments for dis-
eases dependent on circadian rhythms, encompassed within pulsatile 
drug delivery systems. Indeed, the authors of this review encourage 
researchers to develop platforms that are sensitive to stimuli, as the 
results obtained so far by multiple research groups seem to confirm their 
effectiveness. Theragnostic LLCs will also play an important role. The 
possibility of incorporating an imaging agent and one or several active 
substances in the same platform could be very relevant for diseases such 
as cancer, neurodegenerative diseases and others that require a very 
localized action and supervision by a medical team. Within bio-
macromolecules delivery, the most promising results are related to the 
release of proteins and peptides and siRNA. To the authors’ knowledge, 
there do not seem to be many studies on carbohydrate delivery that 
could be used as pharmacological chaperones. The biocompatibility, 
morphological diversity, and biodegradability that lipid LLCs bring to 
tissue engineering do not seem to be taken into account, according to the 
authors’ opinion, as neither the most recent reviews on the subject nor 
the authors of this review seem to find many examples in this respect. As 
is well known, 3D-printing is one of the current trends in biomedicine, 
and according to the authors, the characteristics of these systems could 
be exploited to formulate novel scaffolds through this technology. 

Another application that may represent the near future of lipid LLCs 
is biosensing, something that has been reported in LCs [271] and in 
chromonic LLCs [53] for detecting of bacteria or viruses, but not well 
studied in lipid LLCs. For example, by incorporating mobile redox me-
diators in a GMO-water system, it ensures a rapid communication with 
the electrode [272]. For instance, a platform based on phytantriol 
cubosomes was used to detect cholera toxin B subunit and neutravidin, 
demonstrating its capacity as a biosensing platform [273]. Another 
approach consists in the transformation of the LC in the presence of CO2, 
such as monoolein LLCs and looks like a promising biosensing platform 
[274]. Therefore, with the fabrication of novel LLCs with new lipid 
biomaterials, new applications could arise. In conclusion, lipid LLCs are 
a relevant platform in drug/biomacromolecules delivery and seem to 
provide very interesting features in the field of bioimaging and tissue 
engineering. Therefore, we hope that this review will serve as a guide in 
this fascinating field of research. 
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emulsion vehicles: A correlation between colloidal structure and in vitro release 
of diclofenac diethylamine. J Dispers Sci Technol 2010;31(8):1077–84. https:// 
doi.org/10.1080/01932690903224904. 
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