15 research outputs found

    Applicability of flow cytometry γH2AX assay in population studies: suitability of fresh and frozen whole blood samples

    Get PDF
    Phosphorylation of H2AX histone (γH2AX) represents an early event in the DNA damage response against double-strand breaks (DSB); hence, its measurement provides a surrogate biomarker of DSB. Recently, we reported initial steps in the standardization of γH2AX assay in peripheral blood leukocytes (PBL), addressing the possibility of using cryopreserved samples, and the need of phytohaemagglutinin (PHA) stimulation prior analysis (Toxicol Sci 2015, 144:406-13). Validating the use of whole blood samples as cell specimen for this assay would be particularly useful for human population studies. Hence, in the current study we determined for the first time the feasibility of whole blood samples, both fresh and frozen, to be used in the γH2AX assay, evaluated by flow cytometry, and the convenience of PHA stimulation. Freshly collected and cryopreserved whole blood samples were treated with bleomycin (BLM), actinomycin-D (Act-D) and mitomycin C (MMC); half of the samples were previously incubated with PHA. Results were compared with those from PBL. Negative responses in MMC treatments were probably due to the quiescence of unstimulated cells, or to the short treatment time in PHA stimulated cells. Fresh whole blood samples exhibited a more intense response to BLM and Act-D treatments in stimulated cells, probably due to DSB indirectly produced from other less relevant types of DNA damage. Results obtained in frozen whole blood samples indicate that PHA stimulation is not advisable. In conclusion, this study demonstrates that whole blood samples can be used to assess DSB-related genotoxicity by the flow cytometry γH2AX assay.This work was supported by Xunta de Galicia [ED431B 2019/02], Ministerio de Educación, Cultura y Deporte [BEAGAL18/00142 to V.V], and Deputación Provincial de A Coruña [to M.S.-F. and N.F.-B.]

    Suitability of salivary leucocytes to assess DNA repair ability in human biomonitoring studies by the challenge-comet assay

    Get PDF
    The challenge-comet assay is a simple but effective approach that provides a quantitative and functional determination of DNA repair ability, and allows to monitor the kinetics of repair process. Peripheral blood mononuclear cells (PBMC) are the cells most frequently employed in human biomonitoring studies using the challenge-comet assay, but having a validated alternative of non-invasive biomatrix would be highly convenient for certain population groups and circumstances. The objective of this study was to validate the use of salivary leucocytes in the challenge-comet assay. Leucocytes were isolated from saliva samples and challenged (either in fresh or after cryopreservation) with three genotoxic agents acting by different action mechanisms: bleomycin, methyl methanesulfonate, and ultraviolet radiation. Comet assay was performed just after treatment and at other three additional time points, in order to study repair kinetics. The results obtained demonstrated that saliva leucocytes were as suitable as PBMC for assessing DNA damage of different nature that was efficiently repaired over the evaluated time points, even after 5 months of cryopreservation (after a 24 h stimulation with PHA). Furthermore, a new parameter to determine the efficacy of the repair process, independent of the initial amount of damage induced, is proposed, and recommendations to perform the challenge-comet assay with salivary leucocytes depending on the type of DNA repair to be assessed are suggested. Validation studies are needed to verify whether the method is reproducible and results reliable and comparable among laboratories and studies. © 2022 The AuthorsFunding text 1: This work was funded by the Spanish Ministry of Science and Innovation : MCIN/AEI/10.13039/501100011033 (Grants PID2020-113788RB-I00 and PID2020-114908 GA-I00 ), NanoBioBarriers project (PTDC/MED-TOX/31162/2017), Xunta de Galicia (ED431B 2022/16), co-financed by the Operational Program for Competitiveness and Internationalization (POCI) through European Regional Development Funds ( FEDER / FNR ), Spanish Ministry of Education, Culture and Sport [ BEAGAL18/00142 to V.V.], and Spanish Ministry of Economy and Competitiveness , co-financed by the European Social Fund [ RYC-2015-18394 to L.L,-L,]. Funding for open access charge: Universidade da Coruña/CISUG. ; Funding text 2: This work was funded by the Spanish Ministry of Science and Innovation: MCIN/AEI/10.13039/501100011033 (Grants PID2020-113788RB-I00 and PID2020-114908 GA-I00), NanoBioBarriers project (PTDC/MED-TOX/31162/2017), Xunta de Galicia (ED431B 2022/16), co-financed by the Operational Program for Competitiveness and Internationalization (POCI) through European Regional Development Funds (FEDER/FNR), Spanish Ministry of Education, Culture and Sport [BEAGAL18/00142 to V.V.], and Spanish Ministry of Economy and Competitiveness, co-financed by the European Social Fund [RYC-2015-18394 to L.L,-L,]. Funding for open access charge: Universidade da Coruña/CISUG

    Effects of Zinc Oxide Nanoparticle Exposure on Human Glial Cells and Zebrafish Embryos

    Get PDF
    Zinc oxide nanoparticles (ZnO NPs) are among the most widely used nanomaterials. They have multiple applications in cosmetics, textiles, paints, electronics and, recently, also in biomedicine. This extensive use of ZnO NPs notably increases the probability that both humans and wildlife are subjected to undesirable effects. Despite being among the most studied NPs from a toxicological point of view, much remains unknown about their ecotoxicological effects or how they may affect specific cell types, such as cells of the central nervous system. The main objective of this work was to investigate the effects of ZnO NPs on human glial cells and zebrafish embryo development and to explore the role of the released Zn2+ ions in these effects. The effects on cell viability on human A172 glial cells were assessed with an MTT assay and morphological analysis. The potential acute and developmental toxicity was assessed employing zebrafish (Danio rerio) embryos. To determine the role of Zn2+ ions in the in vitro and in vivo observed effects, we measured their release from ZnO NPs with flame atomic absorption spectrometry. Then, cells and zebrafish embryos were treated with a water-soluble salt (zinc sulfate) at concentrations that equal the number of Zn2+ ions released by the tested concentrations of ZnO NPs. Exposure to ZnO NPs induced morphological alterations and a significant decrease in cell viability depending on the concentration and duration of treatment, even after removing the overestimation due to NP interference. Although there were no signs of acute toxicity in zebrafish embryos, a decrease in hatching was detected after exposure to the highest ZnO NP concentrations tested. The ability of ZnO NPs to release Zn2+ ions into the medium in a concentration-dependent manner was confirmed. Zn2+ ions did not seem entirely responsible for the effects observed in the glial cells, but they were likely responsible for the decrease in zebrafish hatching rate. The results obtained in this work contribute to the knowledge of the toxicological potential of ZnO NPs.This research was funded by the Ministry of Science and Innovation: MCIN/AEI/10.13039/501100011033 (grant PID2020-114908GA-I00), Xunta de Galicia (ED431B 2022/16 and ED481A 2019/003 to A.A-G.), CICA-Disrupting Project 2021SEM-B2, and Ministry of Education, Culture and Sport (BEAGAL18/00142 to V.V.)

    Toxoplasma gondii IgG Serointensity Is Positively Associated With Frailty

    Get PDF
    Background: Persistent inflammation related to aging (inflammaging) is exacerbated by chronic infections and contributes to frailty in older adults. We hypothesized associations between Toxoplasma gondii (T. gondii), a common parasite causing an oligosymptomatic unremitting infection, and frailty, and secondarily between T. gondii and previously reported markers of immune activation in frailty.Methods: We analyzed available demographic, social, and clinical data in Spanish and Portuguese older adults [N = 601; age: mean (SD) 77.3 (8.0); 61% women]. Plasma T. gondii immunoglobulin G (IgG) serointensity was measured with an enzyme-linked immunosorbent assay. The Fried criteria were used to define frailty status. Validated translations of Mini-Mental State Examination, Geriatric Depression Scale, and the Charlson Comorbidity Index were used to evaluate confounders. Previously analyzed biomarkers that were significantly associated with frailty in both prior reports and the current study, and also related to T. gondii serointensity, were further accounted for in multivariable logistic models with frailty as outcome.Results: In T. gondii-seropositives, there was a significant positive association between T. gondii IgG serointensity and frailty, accounting for age (p = .0002), and resisting adjustment for multiple successive confounders. Among biomarkers linked with frailty, kynurenine/tryptophan and soluble tumor necrosis factor receptor II were positively associated with T. gondii serointensity in seropositives (p < .05). Associations with other biomarkers were not significant.Conclusions: This first reported association between T. gondii and frailty is limited by a cross-sectional design and warrants replication. While certain biomarkers of inflammaging were associated with both T. gondii IgG serointensity and frailty, they did not fully mediate the T. gondii-frailty association.This work was supported in part by the Spanish Ministry of Science and Innovation: MCIN/AEI/10.13039/501100011033(grant PID2020-113788RB-I00); Xunta de Galicia (grant ED431B 2022/16); Ministry of Education, Culture and Sport (grant BEAGAL18/00142 to V.V.); and Ministry of Economy and Competitiveness, cofinanced by the European Social Fund (grant RYC-2015-18394 to L.L.-L.). Additionally supported, in part, by the University of Maryland School of Medicine Center for Research on Aging in Baltimore, Maryland; a Clinical Science Research & Development Service Merit Award, Office of Research and Development, U.S. Department of Veterans Affairs, Washington, District of Columbia (grant 1 I01 CX001310-01 to T.T.P.); a R01 grant from the National Institute on Aging, National Institutes of Health, Bethesda, Maryland (grant NIA R01 AG018859 to E.J.K.); and by the Military and Veteran Microbiome: Consortium for Research and Education in Aurora, Colorado (L.A.B., A.J.H., C.A.L., T.T.P.). The opinions expressed in the article belong to the authors and cannot be construed as official positions or opinions of the funders, including the U.S. Veterans Affairs Administration and the National Institutes of Health. Data collected and used for the analyses reported in this article are not available because the initial consent did not include this sharing and because other primary analyses have not been completed. Funding for open access charge: Universidade da Coruna/CISUG

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Effects of iron oxide nanoparticles: Cytotoxicity, genotoxicity, developmental toxicity, and neurotoxicity

    No full text
    Iron oxide nanoparticles (ION) with superparamagnetic properties hold great promise for use in various biomedical applications; specific examples include use as contrast agents for magnetic resonance imaging, in targeted drug delivery, and for induced hyperthermia cancer treatments. Increasing potential applications raise concerns over their potential effects on human health. Nevertheless, very little is currently known about the toxicity associated with exposure to these nanoparticles at different levels of biological organization. This article provides an overview of recent studies evaluating ION cytotoxicity, genotoxicity, developmental toxicity and neurotoxicity. Although the results of these studies are sometimes controversial, they generally indicate that surface coatings and particle size seem to be crucial for the observed ION-induced effects, as they are critical determinants of cellular responses and intensity of effects, and influence potential mechanisms of toxicity. The studies also suggest that some ION are safe for certain biomedical applications, while other uses need to be considered more carefully. Overall, the available studies provide insufficient evidence to fully assess the potential risks for human health related to ION exposure. Additional research in this area is required including studies on potential long-term effects

    Silica-coated iron oxide nanoparticles do not induce DNA double strand breaks or aneugenicity in SHSY5Y neuronal cells

    No full text
    Since increasing biomedical applications, both diagnostic and therapeutic, of ION are being developed, it is crucial to know how they interact with the cellular material and the possible consequences derived for human health.This work was supported by Xunta de Galicia (EM 2012/079), the project NanoToxClass (ERA ERASIINN/001/2013), and by TD1204 MODENA COST Action

    In vitro toxicity screening of silica-coated superparamagnetic iron oxide nanoparticles in glial cells

    No full text
    Nanotechnology industry is progressing with prospects of substantial benefits to economics and science. Superparamagnetic iron oxide nanoparticles (ION) have been showing excellent magnetic properties, biocompatibility and biodegradability, broadening their potential applications and importance in the biomedical fieldThis work was supported by Xunta de Galicia (EM 2012/079), the project NanoToxClass (ERA ERASIINN/001/2013) [funded by FCT/MCTES (PIDDAC) and co-funded by the European Regional Development Fund (ERDF) through the COMPETE Programme], and by TD1204 MODENA COST Action

    Oxidative stress induced by silica-coated iron oxide nanoparticles in SHSY5Y neuronal cells

    No full text
    Nanotechnology industry is progressing with prospects of substantial benefits to economics and science. Superparamagnetic iron oxide nanoparticles (ION) have been showing excellent magnetic properties, biocompatibility and biodegradability, broadening their potential applications and importance in the biomedical field. Nevertheless, there are increasing concerns as to the potential adverse effects on human health and environment and, currently, data on the effects of ION on the human nervous system are controversial.This work was supported by Xunta de Galicia (EM 2012/079), the project NanoToxClass (ERA ERASIINN/001/2013) [funded by FCT/MCTES (PIDDAC) and co-funded by the European Regional Development Fund (ERDF) through the COMPETE Programme], and by TD1204 MODENA COST Action
    corecore