50 research outputs found

    A new narrative?. Three exponents of contemporary Latin American literature: Jorge Volpi, Martin Rejtman and Rodrigo Fresán

    Full text link
    A partir de las propuestas de Jorge Volpi, Martín Rejtman y Rodrigo Fresán, autores latinoamericanos nacidos en la década de los sesenta, intentaremos dar cuenta de cómo esta narrativa enfrenta un cambio de paradigma resultado de los procesos contemporáneos marcados por la globalización. Ello se traduce en la exploración de una identidad desprendida ahora de lo local y en la configuración de unos personajes determinados por la inercia. En definitiva, estéticas que confluyen en la búsqueda de nuevas perspectivas con que enfrentar lo latinoamericanoIn this article we analyze the fiction of Jorge Volpi, Martín Rejtman and Rodrigo Fresán, Hispano-American writers born in the sixties. We focus on how this narrative undergoes a change of paradigm as a result of contemporary dynamics affected by Globalization. This literature explores an identity emerging from the loss of the «local» concerns (contradictory to «global»), as well as develops characters determined by inertia. In short, the aesthetics converge in search of new perspectives to confront Latin American issue

    Aqueous Stable Gold Nanostar/ZIF‐8 Nanocomposites for Light‐Triggered Release of Active Cargo Inside Living Cells

    Get PDF
    This is the peer reviewed version of the following article: C. Carrillo-Carrión, R. Martínez, M. F. Navarro Poupard, B. Pelaz, E. Polo, A. Arenas-Vivo, A. Olgiati, P. Taboada, M. G. Soliman, Ú. Catalán, S. Fernández-Castillejo, R. Solà, W. J. Parak, P. Horcajada, R. A. Alvarez-Puebla, P. del Pino, Angew. Chem. Int. Ed. 2019, 58, 7078, which has been published in final form at https:// doi.org/10.1002/anie.201902817. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived VersionsA plasmonic core–shell gold nanostar/zeolitic‐imidazolate‐framework‐8 (ZIF‐8) nanocomposite was developed for the thermoplasmonic‐driven release of encapsulated active molecules inside living cells. The nanocomposites were loaded, as a proof of concept, with bisbenzimide molecules as functional cargo and wrapped with an amphiphilic polymer that prevents ZIF‐8 degradation and bisbenzimide leaking in aqueous media or inside living cells. The demonstrated molecule‐release mechanism relies on the use of near‐IR light coupled to the plasmonic absorption of the core gold nanostars, which creates local temperature gradients and thus, bisbenzimide thermodiffusion. Confocal microscopy and surface‐enhanced Raman spectroscopy (SERS) were used to demonstrate bisbenzimide loading/leaking and near‐IR‐triggered cargo release inside cells, thereby leading to DNA stainingThis work has received financial support from the MINECO‐Spain (MAT2016‐80266‐R, MAT2015‐74381‐JIN, CTQ2017‐88648R, ENE2016‐79608‐C2‐1‐R, CTQ2017‐89588‐R, RYC‐2014‐15039, RYC‐2014‐16962), the Xunta de Galicia, Centro singular de investigación de Galicia accreditation 2016–2019 (ED431G/09), the Agrupación Estratégica de Materiales Action (ED431E 2018/08), the Generalitat de Cataluña (2017SGR522, 2017SGR883, SLT002/16/00239), the URV (2017PFR‐URV‐B2‐02), the German Research Society (DFG PA 794‐21‐1), and the European Union (European Regional Development Fund—ERDF, H2020‐MSCA‐IF‐2016, project 749667). M.F.N.P acknowledges the CONACYT PhD fellowship programS

    Quantification of inaccurate diagnosis of COPD in primary care medicine: an analysis of the COACH clinical audit

    Get PDF
    [Background] Inaccurate diagnosis in COPD is a current problem with relevant consequences in terms of inefficient health care, which has not been thoroughly studied in primary care medicine. The aim of the present study was to evaluate the degree of inaccurate diagnosis in Primary Care in Spain and study the determinants associated with it.[Methods] The Community Assessment of COPD Health Care (COACH) study is a national, observational, randomized, non-interventional, national clinical audit aimed at evaluating clinical practice for patients with COPD in primary care medicine in Spain. For the present analysis, a correct diagnosis was evaluated based on previous exposure and airway obstruction with and without the presence of symptoms. The association of patient-level and center-level variables with inaccurate diagnosis was studied using multivariate multilevel binomial logistic regression models.[Results] During the study 4,307 cases from 63 centers were audited. The rate of inaccurate diagnosis was 82.4% (inter-regional range from 76.8% to 90.2%). Patient-related interventions associated with inaccurate diagnosis were related to active smoking, lung function evaluation, and specific therapeutic interventions. Center-level variables related to the availability of certain complementary tests and different aspects of the resources available were also associated with an inaccurate diagnosis.[Conclusions] The prevalence data for the inaccurate diagnosis of COPD in primary care medicine in Spain establishes a point of reference in the clinical management of COPD. The descriptors of the variables associated with this inaccurate diagnosis can be used to identify cases and centers in which inaccurate diagnosis is occurring considerably, thus allowing for improvement.Peer reviewe

    Author Correction: Native diversity buffers against severity of non-native tree invasions.

    Get PDF

    Native diversity buffers against severity of non-native tree invasions

    Get PDF
    Determining the drivers of non-native plant invasions is critical for managing native ecosystems and limiting the spread of invasive species1,2^{1,2}. Tree invasions in particular have been relatively overlooked, even though they have the potential to transform ecosystems and economies3,4^{3,4}. Here, leveraging global tree databases5,6,7^{5,6,7}, we explore how the phylogenetic and functional diversity of native tree communities, human pressure and the environment influence the establishment of non-native tree species and the subsequent invasion severity. We find that anthropogenic factors are key to predicting whether a location is invaded, but that invasion severity is underpinned by native diversity, with higher diversity predicting lower invasion severity. Temperature and precipitation emerge as strong predictors of invasion strategy, with non-native species invading successfully when they are similar to the native community in cold or dry extremes. Yet, despite the influence of these ecological forces in determining invasion strategy, we find evidence that these patterns can be obscured by human activity, with lower ecological signal in areas with higher proximity to shipping ports. Our global perspective of non-native tree invasion highlights that human drivers influence non-native tree presence, and that native phylogenetic and functional diversity have a critical role in the establishment and spread of subsequent invasions

    Native diversity buffers against severity of non-native tree invasions.

    Get PDF
    Determining the drivers of non-native plant invasions is critical for managing native ecosystems and limiting the spread of invasive species1,2. Tree invasions in particular have been relatively overlooked, even though they have the potential to transform ecosystems and economies3,4. Here, leveraging global tree databases5-7, we explore how the phylogenetic and functional diversity of native tree communities, human pressure and the environment influence the establishment of non-native tree species and the subsequent invasion severity. We find that anthropogenic factors are key to predicting whether a location is invaded, but that invasion severity is underpinned by native diversity, with higher diversity predicting lower invasion severity. Temperature and precipitation emerge as strong predictors of invasion strategy, with non-native species invading successfully when they are similar to the native community in cold or dry extremes. Yet, despite the influence of these ecological forces in determining invasion strategy, we find evidence that these patterns can be obscured by human activity, with lower ecological signal in areas with higher proximity to shipping ports. Our global perspective of non-native tree invasion highlights that human drivers influence non-native tree presence, and that native phylogenetic and functional diversity have a critical role in the establishment and spread of subsequent invasions

    Native diversity buffers against severity of non-native tree invasions

    Get PDF
    Determining the drivers of non-native plant invasions is critical for managing native ecosystems and limiting the spread of invasive species1,2. Tree invasions in particular have been relatively overlooked, even though they have the potential to transform ecosystems and economies3,4. Here, leveraging global tree databases5-7, we explore how the phylogenetic and functional diversity of native tree communities, human pressure and the environment influence the establishment of non-native tree species and the subsequent invasion severity. We find that anthropogenic factors are key to predicting whether a location is invaded, but that invasion severity is underpinned by native diversity, with higher diversity predicting lower invasion severity. Temperature and precipitation emerge as strong predictors of invasion strategy, with non-native species invading successfully when they are similar to the native community in cold or dry extremes. Yet, despite the influence of these ecological forces in determining invasion strategy, we find evidence that these patterns can be obscured by human activity, with lower ecological signal in areas with higher proximity to shipping ports. Our global perspective of non-native tree invasion highlights that human drivers influence non-native tree presence, and that native phylogenetic and functional diversity have a critical role in the establishment and spread of subsequent invasions
    corecore