87 research outputs found

    Caracterización genética y fenotípica de aislados de Toxoplasma gondii obtenidos de ganado ovino y cerdo ibérico en España

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Veterinaria, Departamento de Sanidad Animal, leída el 22-07-2021Toxoplasma gondii is an apicomplexan parasite globally distributed with a heteroxenous life cycle that virtually comprises all homoeothermic animals, including humans, as intermediate hosts and felids as definitive hosts. The zoonotic, abortifacient, and foodborne nature of the parasite makes toxoplasmosis a relevant public and animal health concern worldwide.A comprehensive research effort on T. gondii biology along with the rapid development of molecular techniques suitable for strains genotyping over the last decades, led to the initial description of a widely clonal European and North American T. gondii genetic population dominated by three main clonal genetic types (I, II, and III), in contrast to an extremely diverse South American population. However, the information available from Europe is limited, with frequent methodological deficiencies and important sampling disparities among regions. Briefly, the available European literature evidences a clear predominance of type II strains (comprising around 80% of samples) coexisting with much less abundant type III and recombinant strains or mixed infections, as well as minor proportions of type I and imported genotypes. In the specific case of Spain, the majority of the scarce investigations dealt with direct genotyping from clinical samples, with the subsequent limitations to classify the strains and the impossibility of extending its characterization...Toxoplasma gondii es un parásito apicomplejo de distribución mundial con un ciclo biológico heteroxeno que prácticamente comprende a todos los animales homeotermos, incluidos los seres humanos, como hospedadores intermediarios, y a los felinos como únicos hospedadores definitivos. El carácter de agente abortigénico, y la naturaleza zoonósica y de transmisión alimentaria de la infección por T. gondii hacen que la toxoplasmosis sea una preocupación importante para la salud pública y animal en todo el mundo. Durante las últimas décadas, los importantes esfuerzos de investigación enfocados a estudiar la biología de T. gondii junto con el rápido desarrollo de técnicas moleculares adecuadas para el genotipado de los aislados, llevaron, inicialmente, a la descripción de una población de T. gondii predominantemente clonal en Europa y Norteamérica dominada por tres tipos genéticos clonales principales (I, II y III), en contraste con una población extremadamente diversa en Sudamérica. Sin embargo, la información disponible en Europa es bastante limitada, con frecuentes deficiencias metodológicas en los estudios e importantes disparidades de muestreo entre regiones. En resumen, la literatura europea disponible evidencia un claro predominio de cepas tipo II (que comprenden alrededor del 80% de las muestras) coexistiendo con cepas tipo III y recombinantes o infecciones mixtas mucho menos abundantes, así como muy escasos genotipos tipo I e importados. En el caso concreto de España, la mayoría de las escasas investigaciones realizaron el genotipado directo de muestras clínicas, con las consiguientes limitaciones para clasificar las cepas y la imposibilidad de ampliar su caracterización...Fac. de VeterinariaTRUEunpu

    Suppression of NYVAC infection in hela cells requires RNase L but is independent of protein kinase R activity

    Full text link
    Protein kinase R (PKR) and RNase L are host cell components that function to contain viral spread after infections. In this study, we analyzed the role of both proteins in the abortive infection of human HeLa cells with the poxvirus strain NYVAC, for which an inhibition of viral A27L and B5R gene expression is described. Specifically, the translation of these viral genes is independent of PKR activation, but their expression is dependent on the RNase L activityThis work was supported by grants from the Spanish Ministry of Health (FIS2011-00127) and Bayer Group Grants4Grants (2013-08-0982 to S.G., SAF2008-02036 to M.E., and AGL2010-15495 to D.R.

    #NiUnaMenos: el grito de todo un país

    Get PDF
    Crónica colectiva sobre la primera movilización del movimiento "Ni Una Menos" en Argentina.Facultad de Periodismo y Comunicación Socia

    #NiUnaMenos: el grito de todo un país

    Get PDF
    Crónica colectiva sobre la primera movilización del movimiento "Ni Una Menos" en Argentina.Facultad de Periodismo y Comunicación Socia

    #NiUnaMenos: el grito de todo un país

    Get PDF
    Crónica colectiva sobre la primera movilización del movimiento "Ni Una Menos" en Argentina.Facultad de Periodismo y Comunicación Socia

    Isolation and genetic characterization of Toxoplasma gondii in Spanish sheep flocks

    Get PDF
    [EN] Background: Toxoplasma gondii is a major cause of abortion in small ruminants and presents a zoonotic risk when undercooked meat containing cysts is consumed. The aim of the present study was to investigate the genetic diversity among the T. gondii strains circulating in ovine livestock in Spain. Methods: Selected samples collected from abortion outbreaks due to toxoplasmosis (n = 31) and from chronically infected adult sheep at slaughterhouses (n = 50) in different Spanish regions were bioassayed in mice, aiming at parasite isolation. In addition, all original clinical samples and the resulting isolates were genotyped by multi-nested PCR-RFLP analysis of 11 molecular markers and by PCR-DNA sequencing of portions of the SAG3, GRA6 and GRA7 genes. Results: As a result, 30 isolates were obtained from 9 Spanish regions: 10 isolates from abortion-derived samples and 20 isolates from adult myocardial tissues. Overall, 3 genotypes were found: ToxoDB#3 (type II PRU variant) in 90% (27/30) of isolates, ToxoDB#2 (clonal type III) in 6.7% (2/30), and ToxoDB#1 (clonal type II) in 3.3% (1/30). When T. gondii-positive tissue samples (n = 151) were directly subjected to RFLP genotyping, complete restriction profiles were obtained for 33% of samples, and up to 98% of the specimens belonged to the type II PRU variant. A foetal brain showed a clonal type II pattern, and four specimens showed unexpected type I alleles at the SAG3 marker, including two foetal brains that showed I + II alleles as co-infection events. Amplicons of SAG3, GRA6 and GRA7 obtained from isolates and clinical samples were subjected to sequencing, allowing us to confirm RFLP results and to detect different single-nucleotide polymorphisms. Conclusions: The present study informed the existence of a predominant type II PRU variant genotype (ToxoDB#3) infecting domestic sheep in Spain, in both abortion cases and chronic infections in adults, coexisting with other clonal (ToxoDB#1 and ToxoDB#2), much less frequent genotypes, as well as polymorphic strains as revealed by clinical sample genotyping. The use of multilocus sequence typing aided in accurately estimating T. gondii intragenotype diversitySIThis research was supported by projects funded by the Spanish Ministry of Science and Innovation (AGL2016-75935-C2-R) and the Community of Madrid (PLATESA2-CM-P2018/BAA-4370). MF and RC were funded by UCMSantander/ 2017 pre-doctoral grants, and PLATESA2 post-doctoral grants, respectively. CG was funded by DGAPA, National Autonomous University of Mexico (UNAM). RC, EC and LO are part of the TOXOSOURCES consortium, supported by funding from the European Union’s Horizon 2020 Research and Innovation programme under grant agreement No. 773830: One Health European Joint Programm

    Isolation and genetic characterization of Toxoplasma gondii in Spanish sheep flocks

    Get PDF
    © The Author(s) 2020.[Background]: Toxoplasma gondii is a major cause of abortion in small ruminants and presents a zoonotic risk when undercooked meat containing cysts is consumed. The aim of the present study was to investigate the genetic diversity among the T. gondii strains circulating in ovine livestock in Spain.[Methods]: Selected samples collected from abortion outbreaks due to toxoplasmosis (n = 31) and from chronically infected adult sheep at slaughterhouses (n = 50) in different Spanish regions were bioassayed in mice, aiming at parasite isolation. In addition, all original clinical samples and the resulting isolates were genotyped by multi-nested PCR-RFLP analysis of 11 molecular markers and by PCR-DNA sequencing of portions of the SAG3, GRA6 and GRA7 genes.[Results]: As a result, 30 isolates were obtained from 9 Spanish regions: 10 isolates from abortion-derived samples and 20 isolates from adult myocardial tissues. Overall, 3 genotypes were found: ToxoDB#3 (type II PRU variant) in 90% (27/30) of isolates, ToxoDB#2 (clonal type III) in 6.7% (2/30), and ToxoDB#1 (clonal type II) in 3.3% (1/30). When T. gondii-positive tissue samples (n = 151) were directly subjected to RFLP genotyping, complete restriction profiles were obtained for 33% of samples, and up to 98% of the specimens belonged to the type II PRU variant. A foetal brain showed a clonal type II pattern, and four specimens showed unexpected type I alleles at the SAG3 marker, including two foetal brains that showed I + II alleles as co-infection events. Amplicons of SAG3, GRA6 and GRA7 obtained from isolates and clinical samples were subjected to sequencing, allowing us to confirm RFLP results and to detect different single-nucleotide polymorphisms.[Conclusions]: The present study informed the existence of a predominant type II PRU variant genotype (ToxoDB#3) infecting domestic sheep in Spain, in both abortion cases and chronic infections in adults, coexisting with other clonal (ToxoDB#1 and ToxoDB#2), much less frequent genotypes, as well as polymorphic strains as revealed by clinical sample genotyping. The use of multilocus sequence typing aided in accurately estimating T. gondii intragenotype diversity.This research was supported by projects funded by the Spanish Ministry of Science and Innovation (AGL2016-75935-C2-R) and the Community of Madrid (PLATESA2-CM-P2018/BAA-4370). MF and RC were funded by UCM-Santander/2017 pre-doctoral grants, and PLATESA2 post-doctoral grants, respectively. CG was funded by DGAPA, National Autonomous University of Mexico (UNAM). RC, EC and LO are part of the TOXOSOURCES consortium, supported by funding from the European Union’s Horizon 2020 Research and Innovation programme under grant agreement No. 773830: One Health European Joint Programme.Peer reviewe

    Bioactive organic inorganic poly(CLMA-co-HEA)/silica nanocomposites

    Full text link
    [EN] A series of novel poly(CLMA-co-HEA)/silica nanocomposites is synthesized from caprolactone 2-(methacryloyloxy)ethyl ester (CLMA) and 2-hydroxyethyl acrylate (HEA) as organic comonomers and the simultaneous sol-gel polymerization of tetraethyloxysilane (TEOS) as silica precursor, in different mass ratios up to a 30 wt% of silica. The nanocomposites are characterized as to their mechanical and thermal properties, water sorption, bioactivity and biocompatibility, reflecting the effect on the organic matrix provided by the silica network formation. The nanocomposites nucleate the growth of hydroxyapatite (HAp) on their surfaces when immersed in the simulated body fluid of the composition used in this work. Proliferation of the MC3T3 osteoblast-like cells on the materials was assessed with the MTS assay showing their biocompatibility. Immunocytochemistry reveals osteocalcin and type I collagen production, indicating that osteoblast differentiation was promoted by the materials, and calcium deposition was confirmed by von Kossa staining. The results indicate that these poly(CLMA-co-HEA)/silica nanocomposites could be a promising biomaterial for bone tissue engineering.The authors acknowledge the financial support from the Spanish Ministry of Science and Innovation through projects DPI2010-20399-c04-03 and MAT2011-28791-C03-02. AJCF acknowledges support through Torres Quevedo grant PTQ08-02-06321. GGF and MMP acknowledge support of CIBER-BBN initiative, financed by Instituto de Salud Carlos III (Spain) with the assistance of the European Regional Development Fund.Ivashchenko, S.; Escobar Ivirico, JL.; García Cruz, DM.; Campillo Fernández, AJ.; Gallego Ferrer, G.; Monleón Pradas, M. (2015). Bioactive organic inorganic poly(CLMA-co-HEA)/silica nanocomposites. Journal of Biomaterials Applications. 29(8):1096-1108. https://doi.org/10.1177/0885328214554816S10961108298Ivirico, J. L. E., Martínez, E. C., Sánchez, M. S., Criado, I. M., Ribelles, J. L. G., & Pradas, M. M. (2007). Structure and properties of methacrylate-endcapped caprolactone networks with modulated water uptake for biomedical applications. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 83B(1), 266-275. doi:10.1002/jbm.b.30792Ivirico, J. L. E., Salmerón-Sánchez, M., Ribelles, J. L. G., Pradas, M. M., Soria, J. M., Gomes, M. E., … Mano, J. F. (2009). Proliferation and differentiation of goat bone marrow stromal cells in 3D scaffolds with tunable hydrophilicity. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 91B(1), 277-286. doi:10.1002/jbm.b.31400Escobar Ivirico, J. L., Salmerón Sánchez, M., Sabater i Serra, R., Meseguer Dueñas, J. M., Gómez Ribelles, J. L., & Monleón Pradas, M. (2006). Structure and Properties of Poly(ɛ-caprolactone) Networks with Modulated Water Uptake. Macromolecular Chemistry and Physics, 207(23), 2195-2205. doi:10.1002/macp.200600399Boxberg, Y., Schnabelrauch, M., Vogt, S., Sánchez, M. S., Ferrer, G. G., Pradas, M. M., & Antón, J. S. (2006). Effect of hydrophilicity on the properties of a degradable polylactide. Journal of Polymer Science Part B: Polymer Physics, 44(4), 656-664. doi:10.1002/polb.20723Salgado, A. J., Coutinho, O. P., & Reis, R. L. (2004). Bone Tissue Engineering: State of the Art and Future Trends. Macromolecular Bioscience, 4(8), 743-765. doi:10.1002/mabi.200400026Sprio, S., Ruffini, A., Valentini, F., D’Alessandro, T., Sandri, M., Panseri, S., & Tampieri, A. (2011). Biomimesis and biomorphic transformations: New concepts applied to bone regeneration. Journal of Biotechnology, 156(4), 347-355. doi:10.1016/j.jbiotec.2011.07.034Barone, D. T.-J., Raquez, J.-M., & Dubois, P. (2011). Bone-guided regeneration: from inert biomaterials to bioactive polymer (nano)composites. Polymers for Advanced Technologies, 22(5), 463-475. doi:10.1002/pat.1845Jones, J. R. (2009). New trends in bioactive scaffolds: The importance of nanostructure. Journal of the European Ceramic Society, 29(7), 1275-1281. doi:10.1016/j.jeurceramsoc.2008.08.003Paital, S. R., & Dahotre, N. B. (2009). Calcium phosphate coatings for bio-implant applications: Materials, performance factors, and methodologies. Materials Science and Engineering: R: Reports, 66(1-3), 1-70. doi:10.1016/j.mser.2009.05.001Arcos, D., & Vallet-Regí, M. (2010). Sol–gel silica-based biomaterials and bone tissue regeneration. Acta Biomaterialia, 6(8), 2874-2888. doi:10.1016/j.actbio.2010.02.012Boccaccini, A. R., Erol, M., Stark, W. J., Mohn, D., Hong, Z., & Mano, J. F. (2010). Polymer/bioactive glass nanocomposites for biomedical applications: A review. Composites Science and Technology, 70(13), 1764-1776. doi:10.1016/j.compscitech.2010.06.002Hanemann, T., & Szabó, D. V. (2010). Polymer-Nanoparticle Composites: From Synthesis to Modern Applications. Materials, 3(6), 3468-3517. doi:10.3390/ma3063468Pantaleón, R., & González-Benito, J. (2010). Structure and thermostability of PMMA in PMMA/silica nanocomposites: Effect of high-energy ball milling and the amount of the nanofiller. Polymer Composites, 31(9), 1585-1592. doi:10.1002/pc.20946Bera, O., Pilić, B., Pavličević, J., Jovičić, M., Holló, B., Szécsényi, K. M., & Špirkova, M. (2011). Preparation and thermal properties of polystyrene/silica nanocomposites. Thermochimica Acta, 515(1-2), 1-5. doi:10.1016/j.tca.2010.12.006Yan, S., Yin, J., Cui, L., Yang, Y., & Chen, X. (2011). Apatite-forming ability of bioactive poly(l-lactic acid)/grafted silica nanocomposites in simulated body fluid. Colloids and Surfaces B: Biointerfaces, 86(1), 218-224. doi:10.1016/j.colsurfb.2011.04.004Zhang, Z.-G., Li, Z.-H., Mao, X.-Z., & Wang, W.-C. (2011). Advances in bone repair with nanobiomaterials: mini-review. Cytotechnology, 63(5), 437-443. doi:10.1007/s10616-011-9367-4Salinas, A. J., Esbrit, P., & Vallet-Regí, M. (2013). A tissue engineering approach based on the use of bioceramics for bone repair. Biomater. Sci., 1(1), 40-51. doi:10.1039/c2bm00071gIzquierdo-Barba, I., Salinas, A. J., & Vallet-Regí, M. (2013). Bioactive Glasses: From Macro to Nano. International Journal of Applied Glass Science, 4(2), 149-161. doi:10.1111/ijag.12028Hajji, P., David, L., Gerard, J. F., Pascault, J. P., & Vigier, G. (1999). Synthesis, structure, and morphology of polymer-silica hybrid nanocomposites based on hydroxyethyl methacrylate. Journal of Polymer Science Part B: Polymer Physics, 37(22), 3172-3187. doi:10.1002/(sici)1099-0488(19991115)37:223.0.co;2-rCatauro, M., Raucci, M. G., De Gaetano, F., & Marotta, A. (2003). Journal of Materials Science, 38(14), 3097-3102. doi:10.1023/a:1024773113001Catauro, M., Raucci, M. G., de Gaetano, F., Buri, A., Marotta, A., & Ambrosio, L. (2004). Sol–gel synthesis, structure and bioactivity of Polycaprolactone/CaO • SiO2hybrid material. Journal of Materials Science: Materials in Medicine, 15(9), 991-995. doi:10.1023/b:jmsm.0000042684.13247.38Nie, K., Pang, W., Wang, Y., Lu, F., & Zhu, Q. (2005). Effects of specific bonding interactions in poly(ɛ-caprolactone)/silica hybrid materials on optical transparency and melting behavior. Materials Letters, 59(11), 1325-1328. doi:10.1016/j.matlet.2004.12.034Zou, H., Wu, S., & Shen, J. (2008). Polymer/Silica Nanocomposites: Preparation, Characterization, Properties, and Applications. Chemical Reviews, 108(9), 3893-3957. doi:10.1021/cr068035qPoologasundarampillai, G., Ionescu, C., Tsigkou, O., Murugesan, M., Hill, R. G., Stevens, M. M., … Jones, J. R. (2010). Synthesis of bioactive class II poly(γ-glutamic acid)/silica hybrids for bone regeneration. Journal of Materials Chemistry, 20(40), 8952. doi:10.1039/c0jm00930jLee, E.-J., Teng, S.-H., Jang, T.-S., Wang, P., Yook, S.-W., Kim, H.-E., & Koh, Y.-H. (2010). Nanostructured poly(ε-caprolactone)–silica xerogel fibrous membrane for guided bone regeneration. Acta Biomaterialia, 6(9), 3557-3565. doi:10.1016/j.actbio.2010.03.022Vallés Lluch, A., Gallego Ferrer, G., & Monleón Pradas, M. (2009). Biomimetic apatite coating on P(EMA-co-HEA)/SiO2 hybrid nanocomposites. Polymer, 50(13), 2874-2884. doi:10.1016/j.polymer.2009.04.022Kawai, T., Ohtsuki, C., Kamitakahara, M., Hosoya, K., Tanihara, M., Miyazaki, T., … Konagaya, S. (2007). In vitro apatite formation on polyamide containing carboxyl groups modified with silanol groups. Journal of Materials Science: Materials in Medicine, 18(6), 1037-1042. doi:10.1007/s10856-006-0081-2Oliveira, A. (2003). Sodium silicate gel as a precursor for the in vitro nucleation and growth of a bone-like apatite coating in compact and porous polymeric structures. Biomaterials, 24(15), 2575-2584. doi:10.1016/s0142-9612(03)00060-7Rhee, S. H. (2003). Effect of Silica Content on the Bioactivity and Mechanical Properties of Poly(ε-Caprolactone)/Silica Hybrid containing Calcium Salt. Key Engineering Materials, 240-242, 187-190. doi:10.4028/www.scientific.net/kem.240-242.187Kokubo, T. (2005). Design of bioactive bone substitutes based on biomineralization process. Materials Science and Engineering: C, 25(2), 97-104. doi:10.1016/j.msec.2005.01.002Rimer, J. D., Trofymluk, O., Navrotsky, A., Lobo, R. F., & Vlachos, D. G. (2007). Kinetic and Thermodynamic Studies of Silica Nanoparticle Dissolution. Chemistry of Materials, 19(17), 4189-4197. doi:10.1021/cm070708dHernández, J. C. R., Pradas, M. M., & Ribelles, J. L. G. (2008). Properties of poly(2-hydroxyethyl acrylate)-silica nanocomposites obtained by the sol–gel process. Journal of Non-Crystalline Solids, 354(17), 1900-1908. doi:10.1016/j.jnoncrysol.2007.10.016Vallés-Lluch, A., Costa, E., Gallego Ferrer, G., Monleón Pradas, M., & Salmerón-Sánchez, M. (2010). Structure and biological response of polymer/silica nanocomposites prepared by sol–gel technique. Composites Science and Technology, 70(13), 1789-1795. doi:10.1016/j.compscitech.2010.07.008Vallés-Lluch, A., Rodríguez-Hernández, J. C., Ferrer, G. G., & Pradas, M. M. (2010). Synthesis and characterization of poly(EMA-co-HEA)/SiO2 nanohybrids. European Polymer Journal, 46(7), 1446-1455. doi:10.1016/j.eurpolymj.2010.04.010Vallés-Lluch, A., Gallego Ferrer, G., & Monleón Pradas, M. (2010). Effect of the silica content on the physico-chemical and relaxation properties of hybrid polymer/silica nanocomposites of P(EMA-co-HEA). European Polymer Journal, 46(5), 910-917. doi:10.1016/j.eurpolymj.2010.02.004Kokubo, T., & Takadama, H. (2006). How useful is SBF in predicting in vivo bone bioactivity? Biomaterials, 27(15), 2907-2915. doi:10.1016/j.biomaterials.2006.01.017Brinker, C. ., Keefer, K. ., Schaefer, D. ., & Ashley, C. . (1982). Sol-gel transition in simple silicates. Journal of Non-Crystalline Solids, 48(1), 47-64. doi:10.1016/0022-3093(82)90245-9Anselme, K., Ponche, A., & Bigerelle, M. (2010). Relative influence of surface topography and surface chemistry on cell response to bone implant materials. Part 2: Biological aspects. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 224(12), 1487-1507. doi:10.1243/09544119jeim901Palacio, M. L. B., & Bhushan, B. (2012). Bioadhesion: a review of concepts and applications. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 370(1967), 2321-2347. doi:10.1098/rsta.2011.0483Keselowsky, B. G., Collard, D. M., & Garcia, A. J. (2005). Integrin binding specificity regulates biomaterial surface chemistry effects on cell differentiation. Proceedings of the National Academy of Sciences, 102(17), 5953-5957. doi:10.1073/pnas.0407356102Khatiwala, C. B., Peyton, S. R., & Putnam, A. J. (2006). Intrinsic mechanical properties of the extracellular matrix affect the behavior of pre-osteoblastic MC3T3-E1 cells. American Journal of Physiology-Cell Physiology, 290(6), C1640-C1650. doi:10.1152/ajpcell.00455.200

    PERFIL DE COMPETENCIAS DE LOS DIRECTIVOS EN CUBA Y SU APLICACIÓN EN LA AGRICULTURA

    Get PDF
    The article aims to propose a methodology for the design and evaluation of the competency profiles of managers in Cuba, considering the conceptual framework, good practices and current legislation. The methodology is supported in three stages and 14 steps. Some of the results of its application in the agriculture sector are presented in various types of organizations, both in the public administration and in the business system. The application and statistical analysis of the results of the tool for assessing the importance of generic competencies for the fulfillment of the mission and vision of the Grupo Empresarial Ganadero is also shown. The generalizability of this methodology is demonstrated by its implementation in a period of eight months in agriculture, through trainings developed with the cadres of the various types of existing entities, from the ministerial level to the productive base.El artículo tiene como objetivo proponer una metodología para el diseño y evaluación de los perfiles de competencias de los directivos en Cuba, teniendo en cuenta el marco conceptual, las buenas prácticas y la legislación. La metodología se soporta en tres etapas y 14 pasos. Se presentan algunos de los resultados de su aplicación en el sector de la agricultura en diversos tipos de organizaciones, tanto de la administración pública como del sistema empresarial. También se muestra la aplicación y el análisis estadístico de los resultados de la herramienta de valoración de la importancia de las competencias genéricas para el cumplimiento de la misión y visión del Grupo Empresarial Ganadero. La capacidad de generalización de esta metodología está demostrada por su implementación en un período de ocho meses en la agricultura, a través de entrenamientos desarrollados con los cuadros de los diversos tipos de entidades existentes, desde el nivel ministerial hasta la base productiva
    corecore