122 research outputs found

    Co/Cu/Co pseudo spin-valve system prepared by magnetron sputtering with different argon pressure

    Full text link
    Thin Co films were fabricated by DC magnetron sputtering. The effect of argon pressure on the microstructure, surface morphology and magnetic properties of the samples was systematically studied. It was found that with the increase of argon pressure, the sharpness of the crystalline texture of the samples declines, the roughness of film surfaces and the coercivity of the films increase. Based on these results, a Co/Cu/Co pseudo spin-valve system was designed and the corresponding structures were fabricated. The difference in coercivity of magnetic layers was obtained by deposition of the Co layers at different Ar pressures. Change of the resistance of this trilayer is induced at a moderate field by the spin rotation in the soft layer with lower coercivity. © 2015 Trans Tech Publications, Switzerland

    Molecular Oxygen Lignin Depolymerization: An Insight into the Stability of Phenolic Monomers

    Full text link
    This is the peer reviewed version of the following article: Y. Mathieu, J. D. Vidal, L. Arribas Martínez, N. Abad Fernández, S. Iborra, A. Corma, ChemSusChem 2020, 13, 4743, which has been published in final form at https://doi.org/10.1002/cssc.202001295. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.[EN] During oxidative depolymn. of lignin in aq. alk. medium using mol. oxygen as oxidant, the highly functionalized primary phenolic monomers are not stable products, owing to various not fully identified secondary reaction mechanisms. However, better understanding of the mechanisms responsible for the instability of the main part of the products of interest derived from lignin is of much interest. Evaluation of their individual reactivities under oxidative conditions should significantly help to find a better way to valorize the lignin polymer and to maximize the yields of target value-added products. Consequently, the main objective of this study is to assess the individual stabilities of some selected ligninbased phenolic compds., such as vanillin, vanillic acid, and acetovanillone, together with some other pure chem. compds. such as phenol and anisole to give an insight into the mechanisms responsible for the simultaneous formation and repolymn. of those products and the influence of the oxidn. conditions. Various complementary strategies of stabilization are proposed, discussed, and applied for the oxidative depolymn. reactions of a tech. lignin extd. from pinewood with a high content of b-O-4 interconnecting bonds to try to obtain enhanced yields of value-added products.The authors thank Tecnicas Reunidas for material and financial support. We also acknowledge the Spanish Ministry of Science, Innovation, and Universities for funding through the "Severo Ochoa" Excellence Program (SEV 2016-0683) and the LIGNO-PRIZED project from the Spanish Centre for the Development of Industrial Technology (CDTI) in the framework of the Strategic Program of National Business Research Consortia (CIEN-2016). Special and kindly thanks are also given to Dr. Dalgi Sunith Barbosa Trillos and Dr. Jakob Mottweiler for their priceless help during the elaboration of the present work.Mathieu, Y.; Vidal, JD.; Arribas Martínez, L.; Abad Fernández, N.; Iborra Chornet, S.; Corma Canós, A. (2020). Molecular Oxygen Lignin Depolymerization: An Insight into the Stability of Phenolic Monomers. ChemSusChem. 13(17):4743-4758. https://doi.org/10.1002/cssc.202001295S474347581317BP. energy outlook2019 https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/energy-outlook/bp-energy-outlook-2019.pdf.J. Bluestein J. Rackley ICF International technical report2010 Coverage of Petroleum Sector Greenhouse Gas Emissions under Climate Policy.Huber, G. W., Iborra, S., & Corma, A. (2006). Synthesis of Transportation Fuels from Biomass:  Chemistry, Catalysts, and Engineering. Chemical Reviews, 106(9), 4044-4098. doi:10.1021/cr068360dFache, M., Boutevin, B., & Caillol, S. (2015). Vanillin Production from Lignin and Its Use as a Renewable Chemical. ACS Sustainable Chemistry & Engineering, 4(1), 35-46. doi:10.1021/acssuschemeng.5b01344Volf, I., & Popa, V. I. (2018). Integrated Processing of Biomass Resources for Fine Chemical Obtaining. Biomass as Renewable Raw Material to Obtain Bioproducts of High-Tech Value, 113-160. doi:10.1016/b978-0-444-63774-1.00004-1Chio, C., Sain, M., & Qin, W. (2019). Lignin utilization: A review of lignin depolymerization from various aspects. Renewable and Sustainable Energy Reviews, 107, 232-249. doi:10.1016/j.rser.2019.03.008Wang, H., Pu, Y., Ragauskas, A., & Yang, B. (2019). From lignin to valuable products–strategies, challenges, and prospects. Bioresource Technology, 271, 449-461. doi:10.1016/j.biortech.2018.09.072Corma, A., Iborra, S., & Velty, A. (2007). Chemical Routes for the Transformation of Biomass into Chemicals. Chemical Reviews, 107(6), 2411-2502. doi:10.1021/cr050989dVohra, M., Manwar, J., Manmode, R., Padgilwar, S., & Patil, S. (2014). Bioethanol production: Feedstock and current technologies. Journal of Environmental Chemical Engineering, 2(1), 573-584. doi:10.1016/j.jece.2013.10.013Claassen, P. A. M., van Lier, J. B., Lopez Contreras, A. M., van Niel, E. W. J., Sijtsma, L., Stams, A. J. M., … Weusthuis, R. A. (1999). Utilisation of biomass for the supply of energy carriers. Applied Microbiology and Biotechnology, 52(6), 741-755. doi:10.1007/s002530051586Kamm, B., & Kamm, M. (2004). Principles of biorefineries. Applied Microbiology and Biotechnology, 64(2), 137-145. doi:10.1007/s00253-003-1537-7Banerjee, S., Mudliar, S., Sen, R., Giri, B., Satpute, D., Chakrabarti, T., & Pandey, R. A. (2010). Commercializing lignocellulosic bioethanol: technology bottlenecks and possible remedies. Biofuels, Bioproducts and Biorefining, 4(1), 77-93. doi:10.1002/bbb.188Howard, R. L., Abotsi, E., Jansen, van R. E. L., & Howard, S. (2003). Lignocellulose biotechnology: issues of bioconversion and enzyme production. African Journal of Biotechnology, 2(12), 602-619. doi:10.5897/ajb2003.000-1115Kleinert, M., & Barth, T. (2008). Towards a Lignincellulosic Biorefinery: Direct One-Step Conversion of Lignin to Hydrogen-Enriched Biofuel. Energy & Fuels, 22(2), 1371-1379. doi:10.1021/ef700631wBajpai, P. (2018). Wood-Based Products and Chemicals. Biermann’s Handbook of Pulp and Paper, 233-247. doi:10.1016/b978-0-12-814240-0.00008-2Zakzeski, J., Bruijnincx, P. C. A., Jongerius, A. L., & Weckhuysen, B. M. (2010). The Catalytic Valorization of Lignin for the Production of Renewable Chemicals. Chemical Reviews, 110(6), 3552-3599. doi:10.1021/cr900354uAmen-Chen, C., Pakdel, H., & Roy, C. (2001). Production of monomeric phenols by thermochemical conversion of biomass: a review. Bioresource Technology, 79(3), 277-299. doi:10.1016/s0960-8524(00)00180-2Reale, S., Di Tullio, A., Spreti, N., & De Angelis, F. (2004). Mass spectrometry in the biosynthetic and structural investigation of lignins. Mass Spectrometry Reviews, 23(2), 87-126. doi:10.1002/mas.10072Dorrestijn, E., Laarhoven, L. J. J., Arends, I. W. C. E., & Mulder, P. (2000). The occurrence and reactivity of phenoxyl linkages in lignin and low rank coal. Journal of Analytical and Applied Pyrolysis, 54(1-2), 153-192. doi:10.1016/s0165-2370(99)00082-0Evans, R. J., Milne, T. A., & Soltys, M. N. (1986). Direct mass-spectrometric studies of the pyrolysis of carbonaceous fuels. Journal of Analytical and Applied Pyrolysis, 9(3), 207-236. doi:10.1016/0165-2370(86)80012-2Chen, Z., & Wan, C. (2017). Biological valorization strategies for converting lignin into fuels and chemicals. Renewable and Sustainable Energy Reviews, 73, 610-621. doi:10.1016/j.rser.2017.01.166Pu, Y., Zhang, D., Singh, P. M., & Ragauskas, A. J. (2008). The new forestry biofuels sector. Biofuels, Bioproducts and Biorefining, 2(1), 58-73. doi:10.1002/bbb.48Yuan, Z., Cheng, S., Leitch, M., & Xu, C. (Charles). (2010). Hydrolytic degradation of alkaline lignin in hot-compressed water and ethanol. Bioresource Technology, 101(23), 9308-9313. doi:10.1016/j.biortech.2010.06.140Reiter, J., Strittmatter, H., Wiemann, L. O., Schieder, D., & Sieber, V. (2013). Enzymatic cleavage of lignin β-O-4 aryl ether bonds via net internal hydrogen transfer. Green Chemistry, 15(5), 1373. doi:10.1039/c3gc40295aBehling, R., Valange, S., & Chatel, G. (2016). Heterogeneous catalytic oxidation for lignin valorization into valuable chemicals: what results? What limitations? What trends? Green Chemistry, 18(7), 1839-1854. doi:10.1039/c5gc03061gCollinson, S. R., & Thielemans, W. (2010). The catalytic oxidation of biomass to new materials focusing on starch, cellulose and lignin. Coordination Chemistry Reviews, 254(15-16), 1854-1870. doi:10.1016/j.ccr.2010.04.007Pandey, M. P., & Kim, C. S. (2010). Lignin Depolymerization and Conversion: A Review of Thermochemical Methods. Chemical Engineering & Technology, 34(1), 29-41. doi:10.1002/ceat.201000270Mathias, A. L., & Rodrigues, A. E. (1995). Production of Vanillin by Oxidation of Pine Kraft Lignins with Oxygen. Holzforschung, 49(3), 273-278. doi:10.1515/hfsg.1995.49.3.273Villar, J. C., Caperos, A., & García-Ochoa, F. (2001). Oxidation of hardwood kraft-lignin to phenolic derivatives with oxygen as oxidant. Wood Science and Technology, 35(3), 245-255. doi:10.1007/s002260100089Calvo-Flores, F. G., & Dobado, J. A. (2010). Lignin as Renewable Raw Material. ChemSusChem, 3(11), 1227-1235. doi:10.1002/cssc.201000157’T Hart, B. A., Simons, J. M., Shoshan, K.-S., Bakker, N. P. M., & Labadie, R. P. (1990). Antiarthritic activity of the newly developed neutrophil oxidative burst antagonist apocynin. Free Radical Biology and Medicine, 9(2), 127-131. doi:10.1016/0891-5849(90)90115-yStefanska, J., Sarniak, A., Wlodarczyk, A., Sokolowska, M., Pniewska, E., Doniec, Z., … Pawliczak, R. (2012). Apocynin reduces reactive oxygen species concentrations in exhaled breath condensate in asthmatics. Experimental Lung Research, 38(2), 90-99. doi:10.3109/01902148.2011.649823Yancheva, D., Velcheva, E., Glavcheva, Z., Stamboliyska, B., & Smelcerovic, A. (2016). Insights in the radical scavenging mechanism of syringaldehyde and generation of its anion. Journal of Molecular Structure, 1108, 552-559. doi:10.1016/j.molstruc.2015.12.054Srinivasulu, C., Ramgopal, M., Ramanjaneyulu, G., Anuradha, C. M., & Suresh Kumar, C. (2018). Syringic acid (SA) ‒ A Review of Its Occurrence, Biosynthesis, Pharmacological and Industrial Importance. Biomedicine & Pharmacotherapy, 108, 547-557. doi:10.1016/j.biopha.2018.09.069Baker, C. J., Mock, N. M., Whitaker, B. D., Roberts, D. P., Rice, C. P., Deahl, K. L., & Aver’yanov, A. A. (2005). Involvement of acetosyringone in plant–pathogen recognition. Biochemical and Biophysical Research Communications, 328(1), 130-136. doi:10.1016/j.bbrc.2004.12.153Liu, C., Wu, S., Zhang, H., & Xiao, R. (2019). Catalytic oxidation of lignin to valuable biomass-based platform chemicals: A review. Fuel Processing Technology, 191, 181-201. doi:10.1016/j.fuproc.2019.04.007Levec, J., & Pintar, A. (2007). Catalytic wet-air oxidation processes: A review. Catalysis Today, 124(3-4), 172-184. doi:10.1016/j.cattod.2007.03.035Xiang, Q., & Lee, Y. Y. (2001). Production of Oxychemicals from Precipitated Hardwood Lignin. Applied Biochemistry and Biotechnology, 91-93(1-9), 71-80. doi:10.1385/abab:91-93:1-9:71Santos, S. G., Marques, A. P., Lima, D. L. D., Evtuguin, D. V., & Esteves, V. I. (2010). Kinetics of Eucalypt Lignosulfonate Oxidation to Aromatic Aldehydes by Oxygen in Alkaline Medium. Industrial & Engineering Chemistry Research, 50(1), 291-298. doi:10.1021/ie101402tWu, G., Heitz, M., & Chornet, E. (1994). Improved Alkaline Oxidation Process for the Production of Aldehydes (Vanillin and Syringaldehyde) from Steam-Explosion Hardwood Lignin. Industrial & Engineering Chemistry Research, 33(3), 718-723. doi:10.1021/ie00027a034Bhargava, S., Jani, H., Tardio, J., Akolekar, D., & Hoang, M. (2007). Catalytic Wet Oxidation of Ferulic Acid (A Model Lignin Compound) Using Heterogeneous Copper Catalysts. Industrial & Engineering Chemistry Research, 46(25), 8652-8656. doi:10.1021/ie070085dDeng, H., Lin, L., Sun, Y., Pang, C., Zhuang, J., Ouyang, P., … Liu, S. (2008). Activity and Stability of Perovskite-Type Oxide LaCoO3 Catalyst in Lignin Catalytic Wet Oxidation to Aromatic Aldehydes Process. Energy & Fuels, 23(1), 19-24. doi:10.1021/ef8005349Deng, H., Lin, L., Sun, Y., Pang, C., Zhuang, J., Ouyang, P., … Liu, S. (2008). Perovskite-type Oxide LaMnO3: An Efficient and Recyclable Heterogeneous Catalyst for the Wet Aerobic Oxidation of Lignin to Aromatic Aldehydes. Catalysis Letters, 126(1-2), 106-111. doi:10.1007/s10562-008-9588-0Ansaloni, S., Russo, N., & Pirone, R. (2017). Wet Air Oxidation of Industrial Lignin Case Study: Influence of the Dissolution Pretreatment and Perovskite-type Oxides. Waste and Biomass Valorization, 9(11), 2165-2179. doi:10.1007/s12649-017-9947-4Deng, H., Lin, L., & Liu, S. (2010). Catalysis of Cu-Doped Co-Based Perovskite-Type Oxide in Wet Oxidation of Lignin To Produce Aromatic Aldehydes. Energy & Fuels, 24(9), 4797-4802. doi:10.1021/ef100768eZhang, J., Deng, H., & Lin, L. (2009). Wet Aerobic Oxidation of Lignin into Aromatic Aldehydes Catalysed by a Perovskite-type Oxide: LaFe1-xCuxO3 (x=0, 0.1, 0.2). Molecules, 14(8), 2747-2757. doi:10.3390/molecules14082747Gao, P., Li, C., Wang, H., Wang, X., & Wang, A. (2013). Perovskite hollow nanospheres for the catalytic wet air oxidation of lignin. Chinese Journal of Catalysis, 34(10), 1811-1815. doi:10.1016/s1872-2067(12)60691-3Gale, M., Cai, C. M., & Gilliard‐Abdul‐Aziz, K. L. (2020). Heterogeneous Catalyst Design Principles for the Conversion of Lignin into High‐Value Commodity Fuels and Chemicals. ChemSusChem, 13(8), 1947-1966. doi:10.1002/cssc.202000002Pepper, J. M., Baylis, P. E. T., & Adler, E. (1959). THE ISOLATION AND PROPERTIES OF LIGNINS OBTAINED BY THE ACIDOLYSIS OF SPRUCE AND ASPEN WOODS IN DIOXANE–WATER MEDIUM. Canadian Journal of Chemistry, 37(8), 1241-1248. doi:10.1139/v59-183Yuan, T.-Q., Sun, S.-N., Xu, F., & Sun, R.-C. (2011). Characterization of Lignin Structures and Lignin–Carbohydrate Complex (LCC) Linkages by Quantitative 13C and 2D HSQC NMR Spectroscopy. Journal of Agricultural and Food Chemistry, 59(19), 10604-10614. doi:10.1021/jf2031549Bauer, S., Sorek, H., Mitchell, V. D., Ibáñez, A. B., & Wemmer, D. E. (2012). Characterization of Miscanthus giganteus Lignin Isolated by Ethanol Organosolv Process under Reflux Condition. Journal of Agricultural and Food Chemistry, 60(33), 8203-8212. doi:10.1021/jf302409dWen, J.-L., Sun, S.-L., Xue, B.-L., & Sun, R.-C. (2013). Recent Advances in Characterization of Lignin Polymer by Solution-State Nuclear Magnetic Resonance (NMR) Methodology. Materials, 6(1), 359-391. doi:10.3390/ma6010359Peterson, D. J., & Loening, N. M. (2007). QQ-HSQC: a quick, quantitative heteronuclear correlation experiment for NMR spectroscopy. Magnetic Resonance in Chemistry, 45(11), 937-941. doi:10.1002/mrc.2073Sette, M., Wechselberger, R., & Crestini, C. (2011). Elucidation of Lignin Structure by Quantitative 2D NMR. Chemistry - A European Journal, 17(34), 9529-9535. doi:10.1002/chem.201003045Tarabanko, V. E., Petukhov, D. V., & Selyutin, G. E. (2004). New Mechanism for the Catalytic Oxidation of Lignin to Vanillin. Kinetics and Catalysis, 45(4), 569-577. doi:10.1023/b:kica.0000038087.95130.a5Rinesch, T., Mottweiler, J., Puche, M., Concepción, P., Corma, A., & Bolm, C. (2017). Mechanistic Investigation of the Catalyzed Cleavage for the Lignin β-O-4 Linkage: Implications for Vanillin and Vanillic Acid Formation. ACS Sustainable Chemistry & Engineering, 5(11), 9818-9825. doi:10.1021/acssuschemeng.7b01725Sette, M., Lange, H., & Crestini, C. (2013). QUANTITATIVE HSQC ANALYSES OF LIGNIN: A PRACTICAL COMPARISON. Computational and Structural Biotechnology Journal, 6(7), e201303016. doi:10.5936/csbj.201303016Bujanovic, B., Ralph, S., Reiner, R., Hirth, K., & Atalla, R. (2010). Polyoxometalates in Oxidative Delignification of Chemical Pulps: Effect on Lignin. Materials, 3(3), 1888-1903. doi:10.3390/ma3031888Casimiro, F. M., Costa, C. A. E., Botelho, C. M., Barreiro, M. F., & Rodrigues, A. E. (2019). Kinetics of Oxidative Degradation of Lignin-Based Phenolic Compounds in Batch Reactor. Industrial & Engineering Chemistry Research, 58(36), 16442-16449. doi:10.1021/acs.iecr.9b02818Dabral, S., Hernández, J. G., Kamer, P. C. J., & Bolm, C. (2017). Organocatalytic Chemoselective Primary Alcohol Oxidation and Subsequent Cleavage of Lignin Model Compounds and Lignin. ChemSusChem, 10(13), 2707-2713. doi:10.1002/cssc.201700703Schutyser, W., Renders, T., Van den Bosch, S., Koelewijn, S.-F., Beckham, G. T., & Sels, B. F. (2018). Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chemical Society Reviews, 47(3), 852-908. doi:10.1039/c7cs00566kSubbotina, E., Velty, A., Samec, J. S. M., & Corma, A. (2020). Zeolite‐Assisted Lignin‐First Fractionation of Lignocellulose: Overcoming Lignin Recondensation through Shape‐Selective Catalysis. ChemSusChem, 13(17), 4528-4536. doi:10.1002/cssc.202000330Mattsson, C., Andersson, S.-I., Belkheiri, T., Åmand, L.-E., Olausson, L., Vamling, L., & Theliander, H. (2016). Using 2D NMR to characterize the structure of the low and high molecular weight fractions of bio-oil obtained from LignoBoost™ kraft lignin depolymerized in subcritical water. Biomass and Bioenergy, 95, 364-377. doi:10.1016/j.biombioe.2016.09.004Rinaldi, R., Jastrzebski, R., Clough, M. T., Ralph, J., Kennema, M., Bruijnincx, P. C. A., & Weckhuysen, B. M. (2016). Paving the Way for Lignin Valorisation: Recent Advances in Bioengineering, Biorefining and Catalysis. Angewandte Chemie International Edition, 55(29), 8164-8215. doi:10.1002/anie.201510351Rinaldi, R., Jastrzebski, R., Clough, M. T., Ralph, J., Kennema, M., Bruijnincx, P. C. A., & Weckhuysen, B. M. (2016). Wege zur Verwertung von Lignin: Fortschritte in der Biotechnik, der Bioraffination und der Katalyse. Angewandte Chemie, 128(29), 8296-8354. doi:10.1002/ange.201510351Tarabanko, V. E., Fomova, N. A., Kuznetsov, B. N., Ivanchenko, N. M., & Kudryashev, A. V. (1995). On the mechanism of vanillin formation in the catalytic oxidation of lignin with oxygen. Reaction Kinetics & Catalysis Letters, 55(1), 161-170. doi:10.1007/bf02075847Venica, A. D., Chen, C.-L., & Gratzl, J. S. (2008). Soda–AQ delignification of poplar wood. Part 1: Reaction mechanism and pulp properties. Holzforschung, 62(6). doi:10.1515/hf.2008.118Gaspa, S., Amura, I., Porcheddu, A., & De Luca, L. (2017). Anhydrides from aldehydes or alcohols via oxidative cross-coupling. New Journal of Chemistry, 41(3), 931-939. doi:10.1039/c6nj02625

    Investigación de los efectos del consumo moderado de vino en la enfermedad de Alzheimer en modelos de ratones con patología Aß y Tau

    Get PDF
    Resumen La enfermedad de Alzheimer (EA) es la forma más común de demencia y tiene una elevada morbilidad y mortalidad. La EA se caracteriza principalmente por la presencia de dos estructuras aberrantes en el cerebro de los pacientes, placas seniles formadas por péptido-β-amiloide (Aβ) y ovillos neurofibrilares cuyo principal componente es la proteína tau fosforilada. Aunque actualmente no se conoce bien la etiopatogenia, cada vez son más los estudios que demuestran un efecto causal del microbioma intestinal sobre la EA y las funciones cognitivas, a través del "eje microbiota intestino-cerebro". Las evidencias científicas sugieren un posible efecto protector de los polifenoles del vino frente a los trastornos neurodegenerativos aunque se desconocen los mecanismos y, hasta el momento, los estudios para evaluar de forma exhaustiva el efecto del vino sobre la etiopatogenia de la EA son muy escasos. El objetivo principal de la línea de investigación que enmarca este trabajo es entender cómo la dieta, y especialmente los polifenoles presentes en los alimentos vegetales, y otros factores del estilo de vida interactúan con el microbioma oral e intestinal, en relación con la salud digestiva y el deterioro cognitivo. Para ello, se está llevando a cabo una aproximación experimental que tiene como finalidad evaluar el posible efecto protector de los polifenoles del vino, mediante la suplementación de la dieta en dos modelos murinos de la EA (patología Aß y Tau), y, por otro lado, se está profundizando en el estudio de los mecanismos de protección mediante la evaluación de los efectos del ácido protocatéquico sobre la actividad eléctrica del cerebro

    Stratigraphic and structural interpretation of the San Pedro Basin (south-eastern Dominican Republic offshore margin)

    Get PDF
    La cuenca de San Pedro (CSP) se define como una depresión batimétrica con tendencia E-O y una extensión aproximada de 6000 km2, situada en el margen sureste de la isla de La Española (República Dominicana y Haití). Estructuralmente se ubica en la parte trasera del Cinturón Deformado de los Muertos (CDM). Considerada tradicionalmente como una cuenca de edad Mioceno medio, cuyo relleno ha sido depositado en el espacio de configuración generado por la progresiva deformación del CDM. Sin embargo, gracias a la integración de los trabajos de cartografía geológica (Proyectos SYSMIN I y II) con datos de geofísica de subsuelo (sísmica de reflexión, registros de pozo y campos potenciales), ha sido posible proponer un nuevo modelo evolutivo de la cuenca que abarca desde el inicio de la sedimentación en un contexto de retro-arco desde el Cretácico Superior hasta la inversión de la cuenca en el Eoceno medio y la posterior evolución del conjunto CSP-CDM hasta la actualidad, pudiendo correlacionar las principales secuencias estratigráficas y estructuras con los datos de afloramiento y pozo.The San Pedro Basin (SPB) consists of an E-W bathymetric depression with an extension of 6000 km2, located in the south-eastern margin of Hispaniola Island (Dominican Republic and Haiti). Structurally, the SPB is situated at the rear zone of the Muertos Thrust Belt (MTB). The basin has been dated as middle Miocene in the bibliography, with the infill deposited in the configuration space generated by the progressive deformation of the MTB. Nevertheless, the integration of the new systematic geological mapping (SYSMIN I&II Programs) with geophysical data (reflection seismic, well logs and potential fields) led us to propose a new evolution model of the basin from the start of sedimentation in Upper Cretaceous in a retro-arc context to the inversion of the basin in middle Eocene and the later evolution of the SPB-MTB system until present, establishing the correlation between main sequences with outcrops and well data.Depto. de Geodinámica, Estratigrafía y PaleontologíaDepto. de Mineralogía y PetrologíaFac. de Ciencias GeológicasTRUEpu

    Semi-industrial development of nutritious and healthy seafood dishes from sustainable species

    Get PDF
    This study aimed to devise innovative, tailor-made, appealing, tasty and semi-industrialized dishes, using sustainable and under-utilized seafood species (bib, common dab, common carp, blue mussel and blue whiting), that can meet the specific nutritional and functional needs of children (8-10-years), pregnant women (20-40-years) and seniors (≥60-years). Hence, contests were organised among cooking schools from 6 European countries and the best recipes/dishes were reformulated, semi-industrially produced and chemically and microbiologically evaluated. The dishes intended for: (i) children and pregnant women had EPA + DHA and I levels that reached the target quantities, supporting the claim as “high in I”; and (ii) seniors were “high in protein” (24.8%-Soup_S and 34.0%-Balls_S of the energy was provided by proteins), “high in vitamin B12”, and had Na contents (≤0.4%) below the defined limit. All dishes reached the vitamin D target value. Sausages_C, Roulade_P, Fillet_P and Balls_S had a well-balanced protein/fat ratio. Roulade_P presented the highest n-3 PUFA/n-6 PUFA ratio (3.3), while Sausages_C the lowest SFA/UNS ratio (0.2). Dishes were considered safe based on different parameters (e.g. Hg-T, PBDEs, Escherichia coli). All represent dietary sources contributing to meet the reference intakes of target nutrients (33->100%), providing valuable options to overcome nutritional and functional imbalances of the three groups.This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement no. 773400 (SEAFOODTOMORROW). This work was also supported by the Spanish Ministry of Science and Innovation (Project CEX 2018-000794-S), the Generalitat de Catalunya (Consolidated Research Group Water and Soil Quality Unit 2017 SGR 1404) and Fundação para a Ciência e a Tecnologia (FCT)/Ministério da Ciência, Tecnologia e Ensino Superior (MCTES) through national funds (UID/QUI/50006/2019, UIDB/50006/2020, UIDP/50006/2020, UIDB/04423/2020 and UIDP/04423/2020). The authors also thank FCT and the European Union's H2020 Research and Innovation Programme for funding through the project Systemic - An integrated approach to the challenge of sustainable food systems: adaptive and mitigatory strategies to address climate change and malnutrition. Sara Cunha also acknowledges FCT for the IF/01616/2015 contract. Biotage is acknowledged for providing SPE cartridges and Bekolut for the QuEChERS kits. This output reflects the views only of the author(s), and the European Union cannot be held responsible for any use that may be made of the information contained therein

    Immunological predictors of CD4+ T cell decline in antiretroviral treatment interruptions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The common response to stopping anti-HIV treatment is an increase of HIV-RNA load and decrease in CD4<sup>+</sup>, but not all the patients have similar responses to this therapeutic strategy. The aim was to identify predictive markers of CD4<sup>+ </sup>cell count declines to < 350/μL in CD4-guided antiretroviral treatment interruptions.</p> <p>Methods</p> <p>27 HIV-infected patients participated in a prospective multicenter study in with a 24 month follow-up. Patients on stable highly active antiretroviral therapy (HAART), with CD4<sup>+ </sup>count > 600/μL, and HIV-RNA < 50 copies/ml for at least 6 months were offered the option to discontinue antiretroviral therapy. The main outcome was a decline in CD4<sup>+ </sup>cell count to < 350/μL.</p> <p>Results</p> <p>After 24 months of follow-up, 16 of 27 (59%) patients (who discontinued therapy) experienced declines in CD4<sup>+ </sup>cell count to < 350/μL. Patients with a CD4<sup>+ </sup>nadir of < 200 cells/μL had a greater risk of restarting therapy during the follow-up (RR (CI95%): 3.37 (1.07; 10.36)). Interestingly, lymphoproliferative responses to <it>Mycobacterium tuberculosis </it>purified protein derivative (PPD) below 10000 c.p.m. at baseline (4.77 (1.07; 21.12)), IL-4 production above 100 pg/mL at baseline (5.95 (1.76; 20.07)) in PBMC cultured with PPD, and increased IL-4 production of PBMC with p24 antigen at baseline (1.25 (1.01; 1.55)) were associated to declines in CD4<sup>+ </sup>cell count to < 350/μL.</p> <p>Conclusion</p> <p>Both the number (CD4<sup>+ </sup>nadir) and the functional activity of CD4<sup>+ </sup>(lymphoproliferative response to PPD) predict the CD4<sup>+ </sup>decrease associated with discontinuation of ART in patients with controlled viremia.</p

    The tree of life: intertwining genomics and evolution

    Get PDF
    20 páginas.- 2 figuras.- 44 referencias,. CSIC Libro blanco 2Evolutionary biology seeks to understand how biological diversity originates and is maintained. High-throughput sequencing permits assembling chromosome-level genomes, characterizing single-cell transcriptomes, and determining epigenomic modifications. Once widely applied to the diversity of living organisms, the reconstruction of the Tree of Life and the identification of the genomic targets of natural selection will be achievedPeer reviewe

    Thermal niche evolution and geographical range expansion in a species complex of western Mediterranean diving beetles

    Get PDF
    [Background] Species thermal requirements are one of the principal determinants of their ecology and biogeography, although our understanding of the interplay between these factors is limited by the paucity of integrative empirical studies. Here we use empirically collected thermal tolerance data in combination with molecular phylogenetics/phylogeography and ecological niche modelling to study the evolution of a clade of three western Mediterranean diving beetles, the Agabus brunneus complex.[Results] The preferred mitochondrial DNA topology recovered A. ramblae (North Africa, east Iberia and Balearic islands) as paraphyletic, with A. brunneus (widespread in the southwestern Mediterranean) and A. rufulus (Corsica and Sardinia) nested within it, with an estimated origin between 0.60-0.25 Ma. All three species were, however, recovered as monophyletic using nuclear DNA markers. A Bayesian skyline plot suggested demographic expansion in the clade at the onset of the last glacial cycle. The species thermal tolerances differ significantly, with A. brunneus able to tolerate lower temperatures than the other taxa. The climatic niche of the three species also differs, with A. ramblae occupying more arid and seasonal areas, with a higher minimum temperature in the coldest month. The estimated potential distribution for both A. brunneus and A. ramblae was most restricted in the last interglacial, becoming increasingly wider through the last glacial and the Holocene.[Conclusions] The A. brunneus complex diversified in the late Pleistocene, most likely in south Iberia after colonization from Morocco. Insular forms did not differentiate substantially in morphology or ecology, but A. brunneus evolved a wider tolerance to cold, which appeared to have facilitated its geographic expansion. Both A. brunneus and A. ramblae expanded their ranges during the last glacial, although they have not occupied areas beyond their LGM potential distribution except for isolated populations of A. brunneus in France and England. On the islands and possibly Tunisia secondary contact between A. brunneus and A. ramblae or A. rufulus has resulted in introgression. Our work highlights the complex dynamics of speciation and range expansions within southern areas during the last glacial cycle, and points to the often neglected role of North Africa as a source of European biodiversity.This work was supported by an FPI grant to AH-G and projects CGL2007-61665 and CGL2010-15755 from the Spanish government to IR. We acknowledge support of the publication fee by the CSIC Open Access Publication Support Initiative through its Unit of Information Resources for Research (URICI).Peer reviewe

    Trends in socioeconomic inequalities in cancer mortality in Barcelona: 1992–2003

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The objective of this study was to assess trends in cancer mortality by educational level in Barcelona from 1992 to 2003.</p> <p>Methods</p> <p>The study population comprised Barcelona inhabitants aged 20 years or older. Data on cancer deaths were supplied by the system of information on mortality. Educational level was obtained from the municipal census. Age-standardized rates by educational level were calculated. We also fitted Poisson regression models to estimate the relative index of inequality (RII) and the Slope Index of Inequalities (SII). All were calculated for each sex and period (1992–1994, 1995–1997, 1998–2000, and 2001–2003).</p> <p>Results</p> <p>Cancer mortality was higher in men and women with lower educational level throughout the study period. Less-schooled men had higher mortality by stomach, mouth and pharynx, oesophagus, larynx and lung cancer. In women, there were educational inequalities for cervix uteri, liver and colon cancer. Inequalities of overall and specific types of cancer mortality remained stable in Barcelona; although a slight reduction was observed for some cancers.</p> <p>Conclusion</p> <p>This study has identified those cancer types presenting the greatest inequalities between men and women in recent years and shown that in Barcelona there is a stable trend in inequalities in the burden of cancer.</p
    corecore