8 research outputs found

    Galectin-3 Modulates Th17 Responses by Regulating Dendritic Cell Cytokines

    Get PDF
    Galectin-3 is a β-galactoside–binding animal lectin with diverse functions, including regulation of T helper (Th) 1 and Th2 responses. Current data indicate that galectin-3 expressed in dendritic cells (DCs) may be contributory. Th17 cells have emerged as critical inducers of tissue inflammation in autoimmune disease and important mediators of host defense against fungal pathogens, although little is known about galectin-3 involvement in Th17 development. We investigated the role of galectin-3 in the induction of Th17 immunity in galectin-3–deficient (gal3−/−) and gal3+/+ mouse bone marrow–derived DCs. We demonstrate that intracellular galectin-3 negatively regulates Th17 polarization in response to the dectin-1 agonist curdlan (a β-glucan present on the cell wall of fungal species) and lipopolysaccharide, agents that prime DCs for Th17 differentiation. On activation of dectin-1, gal3−/− DCs secreted higher levels of the Th17-axis cytokine IL-23 compared with gal3+/+ DCs and contained higher levels of activated c-Rel, an NF-κB subunit that promotes IL-23 expression. Levels of active Raf-1, a kinase that participates in downstream inhibition of c-Rel binding to the IL23A promoter, were impaired in gal3−/− DCs. Modulation of Th17 by galectin-3 in DCs also occurred in vivo because adoptive transfer of gal3−/− DCs exposed to Candida albicans conferred higher Th17 responses and protection against fungal infection. We conclude that galectin-3 suppresses Th17 responses by regulating DC cytokine production

    Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors

    Get PDF
    Background Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology, which is partially shared and partially distinct from that of related psychiatric disorders. Methods We conducted a genome-wide association study (GWAS) of 29,782 suicide attempt (SA) cases and 519,961 controls in the International Suicide Genetics Consortium (ISGC). The GWAS of SA was conditioned on psychiatric disorders using GWAS summary statistics via multitrait-based conditional and joint analysis, to remove genetic effects on SA mediated by psychiatric disorders. We investigated the shared and divergent genetic architectures of SA, psychiatric disorders, and other known risk factors. Results Two loci reached genome-wide significance for SA: the major histocompatibility complex and an intergenic locus on chromosome 7, the latter of which remained associated with SA after conditioning on psychiatric disorders and replicated in an independent cohort from the Million Veteran Program. This locus has been implicated in risk-taking behavior, smoking, and insomnia. SA showed strong genetic correlation with psychiatric disorders, particularly major depression, and also with smoking, pain, risk-taking behavior, sleep disturbances, lower educational attainment, reproductive traits, lower socioeconomic status, and poorer general health. After conditioning on psychiatric disorders, the genetic correlations between SA and psychiatric disorders decreased, whereas those with nonpsychiatric traits remained largely unchanged. Conclusions Our results identify a risk locus that contributes more strongly to SA than other phenotypes and suggest a shared underlying biology between SA and known risk factors that is not mediated by psychiatric disorders.Peer reviewe

    Clinical Benefit from Ipilimumab Therapy in Melanoma Patients may be Associated with Serum CTLA4 Levels

    No full text
    Stage IV metastatic melanoma patients historically have a poor prognosis with 5-10% 5-year survival. Ipilimumab, a monoclonal antibody against cytotoxic T-lymphocyte antigen 4 (CTLA4), is one of the first treatments to provide beneficial durable responses in advanced melanoma. However, less than 25% of those treated benefit, treatment is expensive, and side effects can be fatal. Since soluble (s) CTLA4 may mediate inhibitory effects previously ascribed to the membrane-bound isoform (mCTLA4), we hypothesized patients benefiting from ipilimumab have higher serum levels of sCTLA4. We found that higher sCTLA4 levels correlated both with response and improved survival in patients treated with ipilimumab in a small patient cohort (patients with (n=9) and without (n=5) clinical benefit). sCTLA4 levels were statistically higher in ipilimumab-treated patients with response to ipilimumab. In contrast, sCTLA4 levels did not correlate with survival in patients who did not receive ipilimumab (n=11). These preliminary observations provide a previously unrecognized link between serum sCTLA-4 levels and response to ipilimumab as well as to improved survival in ipilimumab-treated melanoma patients and a potential mechanism by which ipilimumab functions

    Sex-Dependent Shared and Nonshared Genetic Architecture Across Mood and Psychotic Disorders

    Get PDF
    BackgroundSex differences in incidence and/or presentation of schizophrenia (SCZ), major depressive disorder (MDD), and bipolar disorder (BIP) are pervasive. Previous evidence for shared genetic risk and sex differences in brain abnormalities across disorders suggest possible shared sex-dependent genetic risk.MethodsWe conducted the largest to date genome-wide genotype-by-sex (G×S) interaction of risk for these disorders using 85,735 cases (33,403 SCZ, 19,924 BIP, and 32,408 MDD) and 109,946 controls from the PGC (Psychiatric Genomics Consortium) and iPSYCH.ResultsAcross disorders, genome-wide significant single nucleotide polymorphism-by-sex interaction was detected for a locus encompassing NKAIN2 (rs117780815, p = 3.2 × 10-8), which interacts with sodium/potassium-transporting ATPase (adenosine triphosphatase) enzymes, implicating neuronal excitability. Three additional loci showed evidence (p -6) for cross-disorder G×S interaction (rs7302529, p = 1.6 × 10-7; rs73033497, p = 8.8 × 10-7; rs7914279, p = 6.4 × 10-7), implicating various functions. Gene-based analyses identified G×S interaction across disorders (p = 8.97 × 10-7) with transcriptional inhibitor SLTM. Most significant in SCZ was a MOCOS gene locus (rs11665282, p = 1.5 × 10-7), implicating vascular endothelial cells. Secondary analysis of the PGC-SCZ dataset detected an interaction (rs13265509, p = 1.1 × 10-7) in a locus containing IDO2, a kynurenine pathway enzyme with immunoregulatory functions implicated in SCZ, BIP, and MDD. Pathway enrichment analysis detected significant G×S interaction of genes regulating vascular endothelial growth factor receptor signaling in MDD (false discovery rate-corrected p ConclusionsIn the largest genome-wide G×S analysis of mood and psychotic disorders to date, there was substantial genetic overlap between the sexes. However, significant sex-dependent effects were enriched for genes related to neuronal development and immune and vascular functions across and within SCZ, BIP, and MDD at the variant, gene, and pathway levels

    Sex-Dependent Shared and Non-Shared Genetic Architecture Across Mood and Psychotic Disorders

    No full text
    Background: Sex differences in incidence and/or presentation of schizophrenia (SCZ), major depressive disorder (MDD), and bipolar disorder (BIP) are pervasive. Previous evidence for shared genetic risk and sex differences in brain abnormalities across disorders suggest possible shared sex-dependent genetic risk. Methods: We conducted the largest to date genome-wide genotype-by-sex (G×S) interaction of risk for these disorders using 85,735 cases (33,403 SCZ, 19,924 BIP, and 32,408 MDD) and 109,946 controls from the PGC (Psychiatric Genomics Consortium) and iPSYCH. Results: Across disorders, genome-wide significant single nucleotide polymorphism-by-sex interaction was detected for a locus encompassing NKAIN2 (rs117780815, p = 3.2 × 10-8), which interacts with sodium/potassium-transporting ATPase (adenosine triphosphatase) enzymes, implicating neuronal excitability. Three additional loci showed evidence (p < 1 × 10-6) for cross-disorder G×S interaction (rs7302529, p = 1.6 × 10-7; rs73033497, p = 8.8 × 10-7; rs7914279, p = 6.4 × 10-7), implicating various functions. Gene-based analyses identified G×S interaction across disorders (p = 8.97 × 10-7) with transcriptional inhibitor SLTM. Most significant in SCZ was a MOCOS gene locus (rs11665282, p = 1.5 × 10-7), implicating vascular endothelial cells. Secondary analysis of the PGC-SCZ dataset detected an interaction (rs13265509, p = 1.1 × 10-7) in a locus containing IDO2, a kynurenine pathway enzyme with immunoregulatory functions implicated in SCZ, BIP, and MDD. Pathway enrichment analysis detected significant G×S interaction of genes regulating vascular endothelial growth factor receptor signaling in MDD (false discovery rate-corrected p < .05). Conclusions: In the largest genome-wide G×S analysis of mood and psychotic disorders to date, there was substantial genetic overlap between the sexes. However, significant sex-dependent effects were enriched for genes related to neuronal development and immune and vascular functions across and within SCZ, BIP, and MDD at the variant, gene, and pathway levels

    Sex-Dependent Shared and Nonshared Genetic Architecture Across Mood and Psychotic Disorders

    No full text
    corecore