276 research outputs found
Research into the quality standard of homes delivered through change of use permitted development rights
The report provides the findings of independent research into the quality standard of homes delivered through certain national permitted development rights for the change of use.
The research considers the quality of homes delivered in 11 case study areas in England in respect of size, amenity, location and design, drawing out the differences between homes delivered through permitted development compared with planning applications
Stochastic modelling of reaction-diffusion processes: algorithms for bimolecular reactions
Several stochastic simulation algorithms (SSAs) have been recently proposed
for modelling reaction-diffusion processes in cellular and molecular biology.
In this paper, two commonly used SSAs are studied. The first SSA is an
on-lattice model described by the reaction-diffusion master equation. The
second SSA is an off-lattice model based on the simulation of Brownian motion
of individual molecules and their reactive collisions. In both cases, it is
shown that the commonly used implementation of bimolecular reactions (i.e. the
reactions of the form A + B -> C, or A + A -> C) might lead to incorrect
results. Improvements of both SSAs are suggested which overcome the
difficulties highlighted. In particular, a formula is presented for the
smallest possible compartment size (lattice spacing) which can be correctly
implemented in the first model. This implementation uses a new formula for the
rate of bimolecular reactions per compartment (lattice site).Comment: 33 pages, submitted to Physical Biolog
On the corrosion and soiling effects on materials by air pollution in Athens, Greece
In the frame of the European project, entitled MULTI-ASSESS, specimens of structural metals, glass, stone and concrete materials were exposed to air pollution at a station, which was installed for this purpose on a building, located in the centre of Athens. The main purpose of this project was to determine the corrosion and soiling effects of air pollution on materials. A set of the specimens was exposed in a position that was sheltered from rain and partly from wind, and another set was exposed in unsheltered positions on the roof of the above said building. In addition, other specimens were exposed at different heights on the same building, in order to investigate for the first time the corrosion and soiling effects on various materials as a function of height. For the determination of these effects, chemical analysis of the specimens was performed and basic parameters as the weight change, the layer thickness and the optical properties were calculated. Finally, the results obtained are discussed and their plausible interpretation is attempted
Biomass burning in eastern Europe during spring 2006 caused high deposition of ammonium in northern Fennoscandia
High air concentrations of ammonium were detected at low and high altitude sites in Sweden, Finland and Norway during the spring 2006, coinciding with polluted air from biomass burning in eastern Europe passing over central and northern Fennoscandia. Unusually high values for throughfall deposition of ammonium were detected at one low altitude site and several high altitude sites in north Sweden. The occurrence of the high ammonium in throughfall differed between the summer months 2006, most likely related to the timing of precipitation events. The ammonia dry deposition may have contributed to unusual visible injuries on the tree vegetation in northern Fennoscandia that occurred during 2006, in combination with high ozone concentrations. It is concluded that long-range transport of ammonium from large-scale biomass burning may contribute substantially to the nitrogen load at northern latitudes. (C) 2013 Elsevier Ltd. All rights reserved
Individual Exposure to NO2 in Relation to Spatial and Temporal Exposure Indices in Stockholm, Sweden: The INDEX Study
Epidemiology studies of health effects from air pollution, as well as impact assessments, typically rely on ambient monitoring data or modelled residential levels. The relationship between these and personal exposure is not clear. To investigate personal exposure to NO2 and its relationship with other exposure metrics and time-activity patterns in a randomly selected sample of healthy working adults (20–59 years) living and working in Stockholm. Personal exposure to NO2 was measured with diffusive samplers in sample of 247 individuals. The 7-day average personal exposure was 14.3 µg/m3 and 12.5 µg/m3 for the study population and the inhabitants of Stockholm County, respectively. The personal exposure was significantly lower than the urban background level (20.3 µg/m3). In the univariate analyses the most influential determinants of individual exposure were long-term high-resolution dispersion-modelled levels of NO2 outdoors at home and work, and concurrent NO2 levels measured at a rural location, difference between those measured at an urban background and rural location and difference between those measured in busy street and at an urban background location, explaining 20, 16, 1, 2 and 4% (R2) of the 7-day personal NO2 variation, respectively. A regression model including these variables explained 38% of the variation in personal NO2 exposure. We found a small improvement by adding time-activity variables to the latter model (R2 = 0.44). The results adds credibility primarily to long-term epidemiology studies that utilise long-term indices of NO2 exposure at home or work, but also indicates that such studies may still suffer from exposure misclassification and dilution of any true effects. In contrast, urban background levels of NO2 are poorly related to individual exposure
Pan-European rural monitoring network shows dominance of NH3 gas and NH4NO3 aerosol in inorganic atmospheric pollution load
A comprehensive European dataset on monthly atmospheric NH3, acid gases (HNO3, SO2, HCl), and aerosols (NH4+, NO3-, SO42-, Cl−, Na+, Ca2+, Mg2+) is presented and analysed. Speciated measurements were made with a low-volume denuder and filter pack method (DEnuder for Long-Term Atmospheric sampling, DELTA®) as part of the EU NitroEurope (NEU) integrated project. Altogether, there were 64 sites in 20 countries (2006–2010), coordinated between seven European laboratories. Bulk wet-deposition measurements were carried out at 16 co-located sites (2008–2010). Inter-comparisons of chemical analysis and DELTA® measurements allowed an assessment of comparability between laboratories.
The form and concentrations of the different gas and aerosol components measured varied between individual sites and grouped sites according to country, European regions, and four main ecosystem types (crops, grassland, forests, and semi-natural). The smallest concentrations (with the exception of SO42- and Na+) were in northern Europe (Scandinavia), with broad elevations of all components across other regions. SO2 concentrations were highest in central and eastern Europe, with larger SO2 emissions, but particulate SO42- concentrations were more homogeneous between regions. Gas-phase NH3 was the most abundant single
measured component at the majority of sites, with the largest variability in concentrations across the network. The largest concentrations of NH3, NH4+ and NO-3 were at cropland sites in intensively managed agricultural areas (e.g. Borgo Cioffi in Italy), and the smallest were at remote semi-natural and forest sites (e.g. Lompolojänkkä, Finland), highlighting the potential for NH3 to drive the formation of both NH4+ and NO3- aerosol. In the aerosol phase, NH4+ was highly correlated with both NO3- and SO42-, with a near-1:1 relationship between the equivalent concentrations of NH4+ and sum(NO3- + SO42-) of which around 60 % was as NH4NO3.
Distinct seasonality was also observed in the data, influenced by changes in emissions, chemical interactions, and the influence of meteorology on partitioning between the
main inorganic gases and aerosol species. Springtime maxima in NH3 were attributed to the main period of manure spreading, while the peak in summer and trough in winter were linked to the influence of temperature and rainfall on emissions, deposition, and gas–aerosol-phase equilibrium. Seasonality in SO2 was mainly driven by emissions (combustion), with concentrations peaking in winter, except
in southern Europe, where the peak occurred in summer.
Particulate SO42− showed large peaks in concentrations in
summer in southern and eastern Europe, contrasting with
much smaller peaks occurring in early spring in other regions. The peaks in particulate SO42- coincided with peaks
in NH3 concentrations, attributed to the formation of the
stable (NH4)2SO4. HNO3 concentrations were more complex, related to traffic and industrial emissions, photochemistry, and HNO3:NH4NO3 partitioning. While HNO3 concentrations were seen to peak in the summer in eastern and southern Europe (increased photochemistry), the absence of a spring peak in HNO3 in all regions may be explained by the depletion of HNO3 through reaction with surplus NH3 to form the semi-volatile aerosol NH4NO3. Cooler, wetter conditions in early spring favour the formation and persistence of NH4NO3 in the aerosol phase, consistent with the higher springtime concentrations of NH4+ and NO3−. The seasonal profile of NO3- was mirrored by NH4+, illustrating the influence of gas–aerosol partitioning of NH4NO3 in the seasonality of these components.
Gas-phase NH3 and aerosol NH4NO3 were the dominant
species in the total inorganic gas and aerosol species measured in the NEU network. With the current and projected
trends in SO2, NOx , and NH3 emissions, concentrations of
NH3 and NH4NO3 can be expected to continue to dominate
the inorganic pollution load over the next decades, especially
NH3, which is linked to substantial exceedances of ecological thresholds across Europe. The shift from (NH4)2SO4 to an atmosphere more abundant in NH4NO3 is expected to maintain a larger fraction of reactive N in the gas phase by partitioning to NH3 and HNO3 in warm weather, while NH4NO3 continues to contribute to exceedances of air quality limits for PM2.5
Caregiver perceptions of children who have complex communication needs following a home-based intervention using augmentative and alternative communication in rural Kenya: an intervention note:Home-based intervention using AAC in rural Kenya
A high level of unmet communication need exists amongst children with developmental disabilities in sub-Saharan Africa. This study investigated preliminary evidence of the impact associated with a home-based, caregiver-implemented intervention employing AAC methods, with nine children in rural Kenya who have complex communication needs. The intervention used mainly locally-sourced low-tech materials, and was designed to make use of the child's strengths and the caregiver's natural expertise. A pretest-posttest design was used in the study. Data were gathered using an adapted version of the Communication Profile, which was based on the International Classification of Functioning, Disability, and Health (ICF) framework. The non-parametric Wilcoxon signed-rank test was applied to data from the first two sections of the Communication Profile-Adapted. Qualitative analysis was conducted on the final section. The data provided evidence of statistically significant positive changes in caregiver perceptions of communication at the levels of Body Structure and Function, and Activities for Communication. Also, analysis of the Participation for Communication section revealed some expansion to the children's social activities. The potential impact of the home-based intervention would benefit from investigation on a larger scale. Limitations of the study are discussed
[Supplemental data] Composition, isotopic fingerprint and source attribution of nitrate deposition from rain and fog at a Sub-Arctic Mountain site in Central Sweden (Mt Åreskutan)
Material suplementario para artículo científico.UCR::Vicerrectoría de Docencia::Ciencias Básicas::Facultad de Ciencias::Escuela de FísicaUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigaciones Geofísicas (CIGEFI
Solving the chemical master equation using sliding windows
<p>Abstract</p> <p>Background</p> <p>The chemical master equation (CME) is a system of ordinary differential equations that describes the evolution of a network of chemical reactions as a stochastic process. Its solution yields the probability density vector of the system at each point in time. Solving the CME numerically is in many cases computationally expensive or even infeasible as the number of reachable states can be very large or infinite. We introduce the sliding window method, which computes an approximate solution of the CME by performing a sequence of local analysis steps. In each step, only a manageable subset of states is considered, representing a "window" into the state space. In subsequent steps, the window follows the direction in which the probability mass moves, until the time period of interest has elapsed. We construct the window based on a deterministic approximation of the future behavior of the system by estimating upper and lower bounds on the populations of the chemical species.</p> <p>Results</p> <p>In order to show the effectiveness of our approach, we apply it to several examples previously described in the literature. The experimental results show that the proposed method speeds up the analysis considerably, compared to a global analysis, while still providing high accuracy.</p> <p>Conclusions</p> <p>The sliding window method is a novel approach to address the performance problems of numerical algorithms for the solution of the chemical master equation. The method efficiently approximates the probability distributions at the time points of interest for a variety of chemically reacting systems, including systems for which no upper bound on the population sizes of the chemical species is known a priori.</p
- …