51 research outputs found
Mechanisms explaining transitions between tonic and phasic firing in neuronal populations as predicted by a low dimensional firing rate model
Several firing patterns experimentally observed in neural populations have
been successfully correlated to animal behavior. Population bursting, hereby
regarded as a period of high firing rate followed by a period of quiescence, is
typically observed in groups of neurons during behavior. Biophysical
membrane-potential models of single cell bursting involve at least three
equations. Extending such models to study the collective behavior of neural
populations involves thousands of equations and can be very expensive
computationally. For this reason, low dimensional population models that
capture biophysical aspects of networks are needed.
\noindent The present paper uses a firing-rate model to study mechanisms that
trigger and stop transitions between tonic and phasic population firing. These
mechanisms are captured through a two-dimensional system, which can potentially
be extended to include interactions between different areas of the nervous
system with a small number of equations. The typical behavior of midbrain
dopaminergic neurons in the rodent is used as an example to illustrate and
interpret our results.
\noindent The model presented here can be used as a building block to study
interactions between networks of neurons. This theoretical approach may help
contextualize and understand the factors involved in regulating burst firing in
populations and how it may modulate distinct aspects of behavior.Comment: 25 pages (including references and appendices); 12 figures uploaded
as separate file
Ca2+ Regulates the Drosophila Stoned-A and Stoned-B Proteins Interaction with the C2B Domain of Synaptotagmin-1
The dicistronic Drosophila stoned gene is involved in exocytosis and/or endocytosis of synaptic vesicles. Mutations in either stonedA or stonedB cause a severe disruption of neurotransmission in fruit flies. Previous studies have shown that the coiled-coil domain of the Stoned-A and the µ-homology domain of the Stoned-B protein can interact with the C2B domain of Synaptotagmin-1. However, very little is known about the mechanism of interaction between the Stoned proteins and the C2B domain of Synaptotagmin-1. Here we report that these interactions are increased in the presence of Ca2+. The Ca2+-dependent interaction between the µ-homology domain of Stoned-B and C2B domain of Synaptotagmin-1 is affected by phospholipids. The C-terminal region of the C2B domain, including the tryptophan-containing motif, and the Ca2+ binding loop region that modulate the Ca2+-dependent oligomerization, regulates the binding of the Stoned-A and Stoned-B proteins to the C2B domain. Stoned-B, but not Stoned-A, interacts with the Ca2+-binding loop region of C2B domain. The results indicate that Ca2+-induced self-association of the C2B domain regulates the binding of both Stoned-A and Stoned-B proteins to Synaptotagmin-1. The Stoned proteins may regulate sustainable neurotransmission in vivo by binding to Ca2+-bound Synaptotagmin-1 associated synaptic vesicles
Genetic and Chemical Modifiers of a CUG Toxicity Model in Drosophila
Non-coding CUG repeat expansions interfere with the activity of human Muscleblind-like (MBNL) proteins contributing to myotonic dystrophy 1 (DM1). To understand this toxic RNA gain-of-function mechanism we developed a Drosophila model expressing 60 pure and 480 interrupted CUG repeats in the context of a non-translatable RNA. These flies reproduced aspects of the DM1 pathology, most notably nuclear accumulation of CUG transcripts, muscle degeneration, splicing misregulation, and diminished Muscleblind function in vivo. Reduced Muscleblind activity was evident from the sensitivity of CUG-induced phenotypes to a decrease in muscleblind genetic dosage and rescue by MBNL1 expression, and further supported by the co-localization of Muscleblind and CUG repeat RNA in ribonuclear foci. Targeted expression of CUG repeats to the developing eye and brain mushroom bodies was toxic leading to rough eyes and semilethality, respectively. These phenotypes were utilized to identify genetic and chemical modifiers of the CUG-induced toxicity. 15 genetic modifiers of the rough eye phenotype were isolated. These genes identify putative cellular processes unknown to be altered by CUG repeat RNA, and they include mRNA export factor Aly, apoptosis inhibitor Thread, chromatin remodelling factor Nurf-38, and extracellular matrix structural component Viking. Ten chemical compounds suppressed the semilethal phenotype. These compounds significantly improved viability of CUG expressing flies and included non-steroidal anti-inflammatory agents (ketoprofen), muscarinic, cholinergic and histamine receptor inhibitors (orphenadrine), and drugs that can affect sodium and calcium metabolism such as clenbuterol and spironolactone. These findings provide new insights into the DM1 phenotype, and suggest novel candidates for DM1 treatments
Lipid metabolic perturbation is an early-onset phenotype in adult spinster mutants: a Drosophila model for lysosomal storage disorders
Intracellular accumulation of lipids and swollen dysfunctional lysosomes are linked to several neurodegenerative diseases, including lysosomal storage disorders (LSD). Detailed characterization of lipid metabolic changes in relation to the onset and progression of neurodegeneration is currently missing. We systematically analyzed lipid perturbations in spinster (spin) mutants, a Drosophila model of LSD-like neurodegeneration. Our results highlight an imbalance in brain ceramide and sphingosine in the early stages of neurodegeneration, preceding the accumulation of endomembranous structures, manifestation of altered behavior, and buildup of lipofuscin. Manipulating levels of ceramidase and altering these lipids in spin mutants allowed us to conclude that ceramide homeostasis is the driving force in disease progression and is integral to spin function in the adult nervous system. We identified 29 novel physical interaction partners of Spin and focused on the lipid carrier protein, Lipophorin (Lpp). A subset of Lpp and Spin colocalize in the brain and within organs specialized for lipid metabolism (fat bodies and oenocytes). Reduced Lpp protein was observed in spin mutant tissues. Finally, increased levels of lipid metabolites produced by oenocytes in spin mutants allude to a functional interaction between Spin and Lpp, underscoring the systemic nature of lipid perturbation in LSD
Gene Expression in a Drosophila Model of Mitochondrial Disease
Background
A point mutation in the Drosophila gene technical knockout (tko), encoding mitoribosomal protein S12, was previously shown to cause a phenotype of respiratory chain deficiency, developmental delay, and neurological abnormalities similar to those presented in many human mitochondrial disorders, as well as defective courtship behavior.
Methodology/Principal Findings
Here, we describe a transcriptome-wide analysis of gene expression in tko25t mutant flies that revealed systematic and compensatory changes in the expression of genes connected with metabolism, including up-regulation of lactate dehydrogenase and of many genes involved in the catabolism of fats and proteins, and various anaplerotic pathways. Gut-specific enzymes involved in the primary mobilization of dietary fats and proteins, as well as a number of transport functions, were also strongly up-regulated, consistent with the idea that oxidative phosphorylation OXPHOS dysfunction is perceived physiologically as a starvation for particular biomolecules. In addition, many stress-response genes were induced. Other changes may reflect a signature of developmental delay, notably a down-regulation of genes connected with reproduction, including gametogenesis, as well as courtship behavior in males; logically this represents a programmed response to a mitochondrially generated starvation signal. The underlying signalling pathway, if conserved, could influence many physiological processes in response to nutritional stress, although any such pathway involved remains unidentified.
Conclusions/Significance
These studies indicate that general and organ-specific metabolism is transformed in response to mitochondrial dysfunction, including digestive and absorptive functions, and give important clues as to how novel therapeutic strategies for mitochondrial disorders might be developed.Public Library of Scienc
Transcriptome, Proteome, and Metabolite Analyses of a Lactate Dehydrogenase-Negative Mutant of Enterococcus faecalis V583 â–¿ â€
A constructed lactate dehydrogenase (LDH)-negative mutant of Enterococcus faecalis V583 grows at the same rate as the wild type but ferments glucose to ethanol, formate, and acetoin. Microarray analysis showed that LDH deficiency had profound transcriptional effects: 43 genes in the mutant were found to be upregulated, and 45 were found to be downregulated. Most of the upregulated genes encode enzymes of energy metabolism or transport. By two-dimensional (2D) gel analysis, 45 differentially expressed proteins were identified. A comparison of transcriptomic and proteomic data suggested that for several proteins the level of expression is regulated beyond the level of transcription. Pyruvate catabolic genes, including the truncated ldh gene, showed highly increased transcription in the mutant. These genes, along with a number of other differentially expressed genes, are preceded by sequences with homology to binding sites for the global redox-sensing repressor, Rex, of Staphylococcus aureus. The data indicate that the genes are transcriptionally regulated by the NADH/NAD ratio and that this ratio plays an important role in the regulatory network controlling energy metabolism in E. faecalis
Antimicrobial resistance and virulence characteristics in 3 collections of staphylococci from bovine milk samples
Mastitis is a prevalent disease in dairy cattle, and
staphylococci are among the most common causative
pathogens. Staphylococci can express resistance to a
range of antimicrobials, of which methicillin resistance
is of particular public health concern. Additionally,
Staphylococcus aureus carries a variety of virulence factors, although less is understood about the virulence of
non-aureus staphylococci (NAS). The aim of our study
was to identify and characterize 3 collections of staphylococcal isolates from bovine milk samples regarding
antimicrobial resistance, with emphasis on methicillin
resistance, and their carriage of virulence genes typically
displayed by Staph. aureus. A total of 272 staphylococcal isolates collected in Norway and Belgium in 2016
were included, distributed as follows: group 1, Norway,
100 isolates; group 2, Flanders, Belgium, 64 isolates;
group 3, Wallonia, Belgium, 108 isolates. Species identification was performed by use of MALDI-TOF mass
spectrometry. Phenotypic resistance was determined
via disk diffusion, and PCR was used for detection
of methicillin resistance genes, mecA and mecC, and
virulence genes. Antimicrobial resistance was common in Staphylococcus epidermidis and Staphylococcus
haemolyticus from all different groups, with resistance
to trimethoprim-sulfonamide frequently occurring in
Staph. epidermidis and Staph. haemolyticus as well
as in Staph. aureus. Resistance to penicillin was most
frequently observed in group 1. Ten Belgian isolates (1
from group 2, 9 from group 3) carried the methicillin
resistance determinant mecA: 5 Staph. aureus from 2
different farms and 5 NAS from 3 different farms. Almost all Staph. aureus isolates were positive for at least
3 of the screened virulence genes, whereas, in total, only
8 NAS isolates harbored any of the same genes. Our
study contributes to the continuous need for knowledge
regarding staphylococci from food-producing animals
as a basis for better understanding of occurrence of
resistance and virulence traits in these bacteria.
Key words: Staphylococcus aureus, non-aureus
staphylococci, antimicrobial resistance, virulence genes,
bovine mastiti
- …