11 research outputs found
FGF-Receptors and PD-L1 in Anaplastic and Poorly Differentiated Thyroid Cancer: Evaluation of the Preclinical Rationale
Background: Treatment options for poorly differentiated (PDTC) and anaplastic (ATC)
thyroid carcinoma are unsatisfactory and prognosis is generally poor. Lenvatinib (LEN), a
multi-tyrosine kinase inhibitor targeting fibroblast growth factor receptors (FGFR) 1-4 is
approved for advanced radioiodine refractory thyroid carcinoma, but response to single
agent is poor in ATC. Recent reports of combining LEN with PD-1 inhibitor
pembrolizumab (PEM) are promising.
Materials and Methods: Primary ATC (n=93) and PDTC (n=47) tissue samples
diagnosed 1997-2019 at five German tertiary care centers were assessed for PD-L1
expression by immunohistochemistry using Tumor Proportion Score (TPS). FGFR 1-4
mRNA was quantified in 31 ATC and 14 PDTC with RNAscope in-situ hybridization.
Normal thyroid tissue (NT) and papillary thyroid carcinoma (PTC) served as controls.
Disease specific survival (DSS) was the primary outcome variable.
Results: PD-L1 TPS≥50% was observed in 42% of ATC and 26% of PDTC specimens.
Mean PD-L1 expression was significantly higher in ATC (TPS 30%) than in PDTC (5%;
p<0.01) and NT (0%, p<0.001). 53% of PDTC samples had PD-L1 expression ≤5%.
FGFR mRNA expression was generally low in all samples but combined FGFR1-4
expression was significantly higher in PDTC and ATC compared to NT (each p<0.001).
No impact of PD-L1 and FGFR 1-4 expression was observed on DSS.
Conclusion: High tumoral expression of PD-L1 in a large proportion of ATCs and a
subgroup of PDTCs provides a rationale for immune checkpoint inhibition. FGFR
expression is low thyroid tumor cells. The clinically observed synergism of PEM with
LEN may be caused by immune modulation
Copeptin in the differential diagnosis of hypotonic polyuria
Copeptin is secreted in equimolar amount to Arginine Vasopressin (AVP) but can easily be measured with a sandwich immunoassay. Both peptides, copeptin and AVP, show a high correlation. Accordingly, copeptin mirrors the amount of AVP in the circulation and its measurement provides an attractive marker in the differential diagnosis of diabetes insipidus.; Diabetes insipidus-either central or nephrogenic-has to be differentiated from primary polydipsia. Differentiation is crucial since wrong treatment can have deleterious consequences. Since many decades, the "gold standard" for differential diagnosis has been the classical water deprivation test, which has several limitations leading to an overall limited diagnostic accuracy. In addition, the test has a long duration of 17 hours and is cumbersome for patients. Clinical signs and symptoms as well as MRI characteristics overlap between patients with diabetes insipidus and primary polydipsia. Direct measurement of AVP upon osmotic stimulation was first shown to overcome these limitations, but failed to enter clinical practice mainly due to technical limitations of the AVP assay.; We have recently shown that copeptin, without prior water deprivation, identifies patients with nephrogenic diabetes insipidus. On the other hand, for the more difficult differentiation between central diabetes insipidus and primary polydipsia, a copeptin level of 4.9 pmol/L stimulated with hypertonic saline infusion differentiates between these two entities with a high diagnostic accuracy, and is superior to the water deprivation test. It is important to note that close sodium monitoring during the hypertonic saline test is a prerequisite.; Therefore, we propose that copeptin upon hypertonic saline infusion should become the new standard test in the differential diagnosis of diabetes insipidus
Fluid Overload Is Associated With Late Poor Outcomes in Neonates Following Cardiac Surgery*
Hyperosmolality, osmotic stimulus or stress results in vasopressin release. Animal and human in vitro studies have shown that inflammatory parameters such as interleukin-8 (IL-8) and tumour necrosis factor-α (TNF-α) increase in parallel in the central nervous system and bronchial, corneal or intestinal epithelial cell lines in response to osmotic stimulus. Whether osmotic stimulus directly causes a systemic inflammatory response in humans is unknown. We therefore investigated the influence of osmotic stimulus on circulatory markers of systemic inflammation in healthy volunteers. In this prospective cohort study, 44 healthy volunteers underwent a standardized test protocol with an osmotic stimulus leading into the hyperosmotic/hypernatremic range (serum sodium ≥150mmol/l) by hypertonic-saline infusion. Copeptin (a marker indicating vasopressin activity), serum sodium and osmolality, plasma IL-8 and TNF-α were measured at baseline and directly after osmotic stimulus. Median (range) serum sodium increased from 141 mmol/l (136, 147) to 151 mmol/l (145, 154) (p-value <0.01), serum osmolality increased from 295 mmol/l (281, 306) to 315 mmol/l (304, 325) (p-value <0.01). Median (range) copeptin increased from 4.3 pg/l (1.1, 21.4) to 28.8 pg/l (19.9, 43.4) (p-value <0.01). Median (range) IL-8 levels showed a trend to decrease from 0.79 pg/ml (0.37, 1.6) to 0.7 pg/ml (0.4, 1.9) (p-value 0.09) and TNF-α levels decreased from 0.53 pg/ml (0.11, 1.1) to 0.45 pg/ml (0.12, 0.97) (p-value 0.036). Contrary to data obtained in vitro, circulating proinflammatory cytokines tend to or decrease in human plasma after osmotic stimulus. Osmotic stress does not to stimulate circulating markers of systemic inflammation
The challenges of sodium measurements - indirect versus direct ion selective method
Diagnosis and treatment of dysnatremia is challenging and further complicated by the pitfalls of different sodium measurement methods. Routinely used sodium measurements are the indirect (plasma/serum) and direct (whole blood) ion selective electrode (ISE) method, showing discrepant results especially in the setting of acute illness. Few clinicians are aware of differences between the methods in clinically stable patients or healthy volunteers.; Data of 140 patients and 91 healthy volunteers undergoing osmotic stimulation with hypertonic saline infusion were analyzed. Sodium levels were measured simultaneously by indirect and direct ISE method before and at different time points during osmotic stimulation up to a sodium threshold of ≥150 mmol/l. The primary outcome was the difference in sodium levels between the indirect and the direct ISE method.; 878 sodium measurements were analyzed. Mean (SD) sodium levels ranged from 141mmol/l (2.9) to 151mmol/ (2.1) by the indirect ISE compared to 140mmol/l (3) to 149mmol/l (2.8) by the direct ISE method. The interclass correlation coefficient between the two methods was 0.844 (95%-CI 0.823, 0.863). On average, measurements by the indirect ISE were 1.9mmol/l (95%-CI limits -3.2; 6.9) higher than by the direct ISE method (p<0.001). The tendency of the indirect ISE method resulting in higher levels increased with increasing sodium levels.; Intra-individual sodium levels differ significantly between the indirect and direct ISE method also in the absence of acute illness. It is therefore crucial to adhere to the same method in critical situations to avoid false decisions due to measurement differences
Suppressed fat appetite after Roux-en-Y gastric bypass surgery associates with reduced brain mu-opioid receptor availability in diet-induced obese male rats
Brain μ-opioid receptors (MORs) stimulate high-fat (HF) feeding and have been implicated in the distinct long term outcomes on body weight of bariatric surgery and dieting. Whether alterations in fat appetite specifically following these disparate weight loss interventions relate to changes in brain MOR signaling is unknown. To address this issue, diet-induced obese male rats underwent either Roux-en-Y gastric bypass (RYGB) or sham surgeries. Postoperatively, animals were placed on a two-choice diet consisting of low-fat (LF) and HF food and sham-operated rats were further split into ad libitum fed (Sham-LF/HF) and body weight-matched (Sham-BWM) to RYGB groups. An additional set of sham-operated rats always only on a LF diet (Sham-LF) served as lean controls, making four experimental groups in total. Corresponding to a stage of weight loss maintenance for RYGB rats, two-bottle fat preference tests in conjunction with small-animal positron emission tomography (PET) imaging studies with the selective MOR radioligand [C]carfentanil were performed. Brains were subsequently collected and MOR protein levels in the hypothalamus, striatum, prefrontal cortex and orbitofrontal cortex were analyzed by Western Blot. We found that only the RYGB group presented with intervention-specific changes: having markedly suppressed intake and preference for high concentration fat emulsions, a widespread reduction in [C]carfentanil binding potential (reflecting MOR availability) in various brain regions, and a downregulation of striatal and prefrontal MOR protein levels compared to the remaining groups. These findings suggest that the suppressed fat appetite caused by RYGB surgery is due to reduced brain MOR signaling, which may contribute to sustained weight loss unlike the case for dieting
FGF-Receptors and PD-L1 in Anaplastic and Poorly Differentiated Thyroid Cancer: Evaluation of the Preclinical Rationale
Background: Treatment options for poorly differentiated (PDTC) and anaplastic (ATC)
thyroid carcinoma are unsatisfactory and prognosis is generally poor. Lenvatinib (LEN), a
multi-tyrosine kinase inhibitor targeting fibroblast growth factor receptors (FGFR) 1-4 is
approved for advanced radioiodine refractory thyroid carcinoma, but response to single
agent is poor in ATC. Recent reports of combining LEN with PD-1 inhibitor
pembrolizumab (PEM) are promising.
Materials and Methods: Primary ATC (n=93) and PDTC (n=47) tissue samples
diagnosed 1997-2019 at five German tertiary care centers were assessed for PD-L1
expression by immunohistochemistry using Tumor Proportion Score (TPS). FGFR 1-4
mRNA was quantified in 31 ATC and 14 PDTC with RNAscope in-situ hybridization.
Normal thyroid tissue (NT) and papillary thyroid carcinoma (PTC) served as controls.
Disease specific survival (DSS) was the primary outcome variable.
Results: PD-L1 TPS≥50% was observed in 42% of ATC and 26% of PDTC specimens.
Mean PD-L1 expression was significantly higher in ATC (TPS 30%) than in PDTC (5%;
p<0.01) and NT (0%, p<0.001). 53% of PDTC samples had PD-L1 expression ≤5%.
FGFR mRNA expression was generally low in all samples but combined FGFR1-4
expression was significantly higher in PDTC and ATC compared to NT (each p<0.001).
No impact of PD-L1 and FGFR 1-4 expression was observed on DSS.
Conclusion: High tumoral expression of PD-L1 in a large proportion of ATCs and a
subgroup of PDTCs provides a rationale for immune checkpoint inhibition. FGFR
expression is low thyroid tumor cells. The clinically observed synergism of PEM with
LEN may be caused by immune modulation
FGF-Receptors and PD-L1 in Anaplastic and Poorly Differentiated Thyroid Cancer: Evaluation of the Preclinical Rationale
Background: Treatment options for poorly differentiated (PDTC) and anaplastic (ATC)
thyroid carcinoma are unsatisfactory and prognosis is generally poor. Lenvatinib (LEN), a
multi-tyrosine kinase inhibitor targeting fibroblast growth factor receptors (FGFR) 1-4 is
approved for advanced radioiodine refractory thyroid carcinoma, but response to single
agent is poor in ATC. Recent reports of combining LEN with PD-1 inhibitor
pembrolizumab (PEM) are promising.
Materials and Methods: Primary ATC (n=93) and PDTC (n=47) tissue samples
diagnosed 1997-2019 at five German tertiary care centers were assessed for PD-L1
expression by immunohistochemistry using Tumor Proportion Score (TPS). FGFR 1-4
mRNA was quantified in 31 ATC and 14 PDTC with RNAscope in-situ hybridization.
Normal thyroid tissue (NT) and papillary thyroid carcinoma (PTC) served as controls.
Disease specific survival (DSS) was the primary outcome variable.
Results: PD-L1 TPS≥50% was observed in 42% of ATC and 26% of PDTC specimens.
Mean PD-L1 expression was significantly higher in ATC (TPS 30%) than in PDTC (5%;
p<0.01) and NT (0%, p<0.001). 53% of PDTC samples had PD-L1 expression ≤5%.
FGFR mRNA expression was generally low in all samples but combined FGFR1-4
expression was significantly higher in PDTC and ATC compared to NT (each p<0.001).
No impact of PD-L1 and FGFR 1-4 expression was observed on DSS.
Conclusion: High tumoral expression of PD-L1 in a large proportion of ATCs and a
subgroup of PDTCs provides a rationale for immune checkpoint inhibition. FGFR
expression is low thyroid tumor cells. The clinically observed synergism of PEM with
LEN may be caused by immune modulation
Serotonin transporter gene promoter methylation status correlates with in vivo prefrontal 5-HTT availability and reward function in human obesity
A polymorphism in the promoter region of the human serotonin transporter (5-HTT)-coding SLC6A4 gene (5-HTTLPR) has been implicated in moderating susceptibility to stress-related psychopathology and to possess regulatory functions on human in vivo 5-HTT availability. However, data on a direct relation between 5-HTTLPR and in vivo 5-HTT availability have been inconsistent. Additional factors such as epigenetic modifications of 5-HTTLPR might contribute to this association. This is of particular interest in the context of obesity, as an association with 5-HTTLPR hypermethylation has previously been reported. Here, we tested the hypothesis that methylation rates of 14 cytosine–phosphate–guanine (CpG) 5-HTTLPR loci, in vivo central 5-HTT availability as measured with [11C]DASB positron emission tomography (PET) and body mass index (BMI) are related in a group of 30 obese (age: 36±10 years, BMI>35 kg/m2) and 14 normal-weight controls (age 36±7 years, BMI<25 kg/m2). No significant association between 5-HTTLPR methylation and BMI overall was found. However, site-specific elevations in 5-HTTLPR methylation rates were significantly associated with lower 5-HTT availability in regions of the prefrontal cortex (PFC) specifically within the obese group when analyzed in isolation. This association was independent of functional 5-HTTLPR allelic variation. In addition, negative correlative data showed that CpG10-associated 5-HTT availability determines levels of reward sensitivity in obesity. Together, our findings suggest that epigenetic mechanisms rather than 5-HTTLPR alone influence in vivo 5-HTT availability, predominantly in regions having a critical role in reward processing, and this might have an impact on the progression of the obese phenotype
FGF-Receptors and PD-L1 in Anaplastic and Poorly Differentiated Thyroid Cancer: Evaluation of the Preclinical Rationale
Background
Treatment options for poorly differentiated (PDTC) and anaplastic (ATC) thyroid carcinoma are unsatisfactory and prognosis is generally poor. Lenvatinib (LEN), a multi-tyrosine kinase inhibitor targeting fibroblast growth factor receptors (FGFR) 1-4 is approved for advanced radioiodine refractory thyroid carcinoma, but response to single agent is poor in ATC. Recent reports of combining LEN with PD-1 inhibitor pembrolizumab (PEM) are promising.
Materials and Methods
Primary ATC (n=93) and PDTC (n=47) tissue samples diagnosed 1997-2019 at five German tertiary care centers were assessed for PD-L1 expression by immunohistochemistry using Tumor Proportion Score (TPS). FGFR 1-4 mRNA was quantified in 31 ATC and 14 PDTC with RNAscope in-situ hybridization. Normal thyroid tissue (NT) and papillary thyroid carcinoma (PTC) served as controls. Disease specific survival (DSS) was the primary outcome variable.
Results
PD-L1 TPS≥50% was observed in 42% of ATC and 26% of PDTC specimens. Mean PD-L1 expression was significantly higher in ATC (TPS 30%) than in PDTC (5%; p<0.01) and NT (0%, p<0.001). 53% of PDTC samples had PD-L1 expression ≤5%. FGFR mRNA expression was generally low in all samples but combined FGFR1-4 expression was significantly higher in PDTC and ATC compared to NT (each p<0.001). No impact of PD-L1 and FGFR 1-4 expression was observed on DSS.
Conclusion
High tumoral expression of PD-L1 in a large proportion of ATCs and a subgroup of PDTCs provides a rationale for immune checkpoint inhibition. FGFR expression is low thyroid tumor cells. The clinically observed synergism of PEM with LEN may be caused by immune modulation