56 research outputs found

    In Situ Study the Dynamics of Blade-Coated All-Polymer Bulk Heterojunction Formation and Impact on Photovoltaic Performance of Solar Cells

    Get PDF
    All-polymer solar cells (all-PSCs) have achieved impressive progress by employing acceptors polymerized from well performing small-molecule non-fullerene acceptors. Herein, the device performance and morphology evolution in blade-coated all-PSCs based on PBDBT:PF5–Y5 blends prepared from two different solvents, chlorobenzene (CB), and ortho-xylene (o-XY) are studied. The absorption spectra in CB solution indicate more ordered conformation for PF5–Y5. The drying process of PBDBT:PF5–Y5 blends is monitored by in situ multifunctional spectroscopy and the final film morphology is characterized with ex situ techniques. Finer-mixed donor/acceptor nanostructures are obtained in CB-cast film than that in o-XY-cast ones, corresponding to more efficient charge generation in the solar cells. More importantly, the conformation of polymers in solution determines the overall film morphology and the device performance. The relatively more ordered structure in CB-cast films is beneficial for charge transport and reduced non-radiative energy loss. Therefore, to achieve high-performance all-PSCs with small energy loss, it is crucial to gain favorable aggregation in the initial stage in solution

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    Piperlongumine inhibits hepatocellular carcinoma growth by modulating GSTP1 and restraining the STAT3 signaling pathway

    No full text
    Background: Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths worldwide, underscoring the need for effective treatments. Purpose: This study aimed to investigate the growth-inhibitory effects of piperlongumine (PIP) on HCC and identify the key gene responsible for its action. Study Design: This study explored the molecular mechanisms underlying PIP’s suppression of HCC. Methods: To evaluate the inhibitory effect of PIP, HCC cell lines and nude mice models with human HCC xenografts were employed. Western blot analysis was used to determine the protein levels of glutathione-S-transferase P1 (GSTP1) and signal transducer and activator of transcription 3 (STAT3) following PIP intervention. Cell function analysis was conducted by manipulating the GSTP1 gene through overexpression or knockout. Additionally, immunoprecipitation was utilized to probe the ability of STAT3 to bind to GSTP1. Results: Exposure to PIP led to an increased dissociation of GSTP1 dimers and a reduction in p-STAT3 levels in HCC cells. Knockout of GSTP1 attenuated the inhibitory effect of PIP on HCC growth, while overexpression of GSTP1 heightened the sensitivity of HCC cells to PIP. Moreover, PIP enhanced the interaction between GSTP1 and STAT3. This study provides insights into PIP’s role in inhibiting HCC growth. It effectively modulates structural changes in the GSTP1 protein, resulting in an enhanced ability of STAT3 to bind to GSTP1 and the suppression of the STAT3 signaling pathway. Conclusion: These findings suggest that GSTP1 may serve as a pivotal gene in PIP-based HCC treatment. The novel insights gained from this research pave the way for the exploration of effective therapeutic strategies

    SPIRAL: integrating and aligning spatially resolved transcriptomics data across different experiments, conditions, and technologies

    No full text
    Abstract Properly integrating spatially resolved transcriptomics (SRT) generated from different batches into a unified gene-spatial coordinate system could enable the construction of a comprehensive spatial transcriptome atlas. Here, we propose SPIRAL, consisting of two consecutive modules: SPIRAL-integration, with graph domain adaptation-based data integration, and SPIRAL-alignment, with cluster-aware optimal transport-based coordination alignment. We verify SPIRAL with both synthetic and real SRT datasets. By encoding spatial correlations to gene expressions, SPIRAL-integration surpasses state-of-the-art methods in both batch effect removal and joint spatial domain identification. By aligning spots cluster-wise, SPIRAL-alignment achieves more accurate coordinate alignments than existing methods

    Genome-Wide Identification and Expression Analyses of AnSnRK2 Gene Family under Osmotic Stress in Ammopiptanthus nanus

    No full text
    Sucrose non-fermenting-1 (SNF1)-related protein kinase 2’s (SnRK2s) are plant-specific serine/threonine protein kinases and play crucial roles in the abscisic acid signaling pathway and abiotic stress response. Ammopiptanthus nanus is a relict xerophyte shrub and extremely tolerant of abiotic stresses. Therefore, we performed genome-wide identification of the AnSnRK2 genes and analyzed their expression profiles under osmotic stresses including drought and salinity. A total of 11 AnSnRK2 genes (AnSnRK2.1-AnSnRK2.11) were identified in the A. nanus genome and were divided into three groups according to the phylogenetic tree. The AnSnRK2.6 has seven introns and others have eight introns. All of the AnSnRK2 proteins are highly conserved at the N-terminus and contain similar motif composition. The result of cis-acting element analysis showed that there were abundant hormone- and stress-related cis-elements in the promoter regions of AnSnRK2s. Moreover, the results of quantitative real-time PCR exhibited that the expression of most AnSnRK2s was induced by NaCl and PEG-6000 treatments, but the expression of AnSnRK2.3 and AnSnRK2.6 was inhibited, suggesting that the AnSnRK2s might play key roles in stress tolerance. The study provides insights into understanding the function of AnSnRK2s
    corecore