2,573 research outputs found
The Actuator: Demining Innovations
This approach to humanitarian demining differs from generally accepted methodology. It has not yet been tried, and the purpose of this article is to ensure that the general concept is placed in the public domain, where it may be debated and modified without considerations of intellectual property. Interval Research Corporation, where this idea originated, is not in the business of mine clearance, or of manufacturing mine clearance systems, so the idea is being passed along to the community best capable of analyzing it
Asexual and sexual replication in sporulating organisms
This paper develops models describing asexual and sexual replication in
sporulating organisms. Replication via sporulation is the replication strategy
for all multicellular life, and may even be observed in unicellular life (such
as with budding yeast). We consider diploid populations replicating via one of
two possible sporulation mechanisms: (1) Asexual sporulation, whereby adult
organisms produce single-celled diploid spores that grow into adults
themselves. (2) Sexual sporulation, whereby adult organisms produce
single-celled diploid spores that divide into haploid gametes. The haploid
gametes enter a haploid "pool", where they may recombine with other haploids to
form a diploid spore that then grows into an adult. We consider a haploid
fusion rate given by second-order reaction kinetics. We work with a simplified
model where the diploid genome consists of only two chromosomes, each of which
may be rendered defective with a single point mutation of the wild-type. We
find that the asexual strategy is favored when the rate of spore production is
high compared to the characteristic growth rate from a spore to a reproducing
adult. Conversely, the sexual strategy is favored when the rate of spore
production is low compared to the characteristic growth rate from a spore to a
reproducing adult. As the characteristic growth time increases, or as the
population density increases, the critical ratio of spore production rate to
organism growth rate at which the asexual strategy overtakes the sexual one is
pushed to higher values. Therefore, the results of this model suggest that, for
complex multicellular organisms, sexual replication is favored at high
population densities, and low growth and sporulation rates.Comment: 8 pages, 5 figures, to be submitted to Journal of Theoretical
Biology, figures not included in this submissio
Clusters of microRNAs emerge by new hairpins in existing transcripts
Genetic linkage may result in the expression of multiple products from a polycistronic transcript, under the control of a single promoter. In animals, protein-coding polycistronic transcripts are rare. However, microRNAs are frequently clustered in the genomes of animals, and these clusters are often transcribed as a single unit. The evolution of microRNA clusters has been the subject of much speculation, and a selective advantage of clusters of functionally related microRNAs is often proposed. However, the origin of microRNA clusters has not been so far explored. Here, we study the evolution of microRNA clusters in Drosophila melanogaster. We observed that the majority of microRNA clusters arose by the de novo formation of new microRNA-like hairpins in existing microRNA transcripts. Some clusters also emerged by tandem duplication of a single microRNA. Comparative genomics show that these clusters are unlikely to split or undergo rearrangements. We did not find any instances of clusters appearing by rearrangement of pre-existing microRNA genes. We propose a model for microRNA cluster evolution in which selection over one of the microRNAs in the cluster interferes with the evolution of the other linked microRNAs. Our analysis suggests that the study of microRNAs and small RNAs must consider linkage associations
The degree of intratumor mutational heterogeneity varies by primary tumor sub-site
Citation: Ledgerwood, L. G., Kumar, D., Eterovic, A. K., Wick, J., Chen, K., Zhao, H., . . . Thomas, S. M. (2016). The degree of intratumor mutational heterogeneity varies by primary tumor sub-site. Oncotarget, 7(19), 27185-27198. doi:10.18632/oncotarget.8448Additional Authors: Chien, J.;Mills, G. B.;Grandis, J. R.;Thomas, S. M.In an era where mutational profiles inform treatment options, it is critical to know the extent to which tumor biopsies represent the molecular profile of the primary and metastatic tumor. Head and neck squamous cell carcinoma (HNSCC) arise primarily in the mucosal lining of oral cavity and oropharynx. Despite aggressive therapy the 5-year survival rate is at 50%. The primary objective of this study is to characterize the degree of intratumor mutational heterogeneity in HNSCC. We used multi-region sequencing of paired primary and metastatic tumor DNA of 24 spatially distinct samples from seven patients with HNSCC of larynx, floor of the mouth (FOM) or oral tongue. Full length, in-depth sequencing of 202 genes implicated in cancer was carried out. Larynx and FOM tumors had more than 69.2% unique SNVs between the paired primary and metastatic lesions. In contrast, the oral tongue HNSCC had only 33.3% unique SNVs across multiple sites. In addition, HNSCC of the oral tongue had fewer mutations than larynx and FOM tumors. These findings were validated on the Affymetrix whole genome 6.0 array platform and were consistent with data from The Cancer Genome Atlas (TCGA). This is the first report demonstrating differences in mutational heterogeneity varying by subsite in HNSCC. The heterogeneity within laryngeal tumor specimens may lead to an underestimation of the genetic abnormalities within tumors and may foster resistance to standard treatment protocols. These findings are relevant to investigators and clinicians developing personalized cancer treatments based on identification of specific mutations in tumor biopsies
Inhibition of Fungi and Gram-Negative Bacteria by Bacteriocin BacTN635 Produced by Lactobacillus plantarum sp. TN635
The aim of this study was to evaluate 54 lactic acid bacteria (LAB) strains isolated from meat, fermented vegetables and dairy products for their capacity to produce antimicrobial activities against several bacteria and fungi. The strain designed TN635 has been selected for advanced studies. The supernatant culture of this strain inhibits the growth of all tested pathogenic including the four Gram-negative bacteria (Salmonella enterica ATCC43972, Pseudomonas aeruginosa ATCC 49189, Hafnia sp. and Serratia sp.) and the pathogenic fungus Candida tropicalis R2 CIP203. Based on the nucleotide sequence of the 16S rRNA gene of the strain TN635 (1,540 pb accession no FN252881) and the phylogenetic analysis, we propose the assignment of our new isolate bacterium as Lactobacillus plantarum sp. TN635 strain. Its antimicrobial compound was determined as a proteinaceous substance, stable to heat and to treatment with surfactants and organic solvents. Highest antimicrobial activity was found between pH 3 and 11 with an optimum at pH = 7. The BacTN635 was purified to homogeneity by a four-step protocol involving ammonium sulfate precipitation, centrifugal microconcentrators with a 10-kDa membrane cutoff, gel filtration Sephadex G-25, and C18 reverse-phase HPLC. SDS-PAGE analysis of the purified BacTN635, revealed a single band with an estimated molecular mass of approximately 4 kDa. The maximum bacteriocin production (5,000 AU/ml) was recorded after a 16-h incubation in Man, Rogosa, and Sharpe (MRS) medium at 30 °C. The mode of action of the partial purified BacTN635 was identified as bactericidal against Listeria ivanovii BUG 496 and as fungistatic against C. tropicalis R2 CIP203
Biological assessment of robust noise models in microarray data analysis
Motivation: Although several recently proposed analysis packages for microarray data can cope with heavy-tailed noise, many applications rely on Gaussian assumptions. Gaussian noise models foster computational efficiency. This comes, however, at the expense of increased sensitivity to outlying observations. Assessing potential insufficiencies of Gaussian noise in microarray data analysis is thus important and of general interest
Sequence-based prediction for vaccine strain selection and identification of antigenic variability in foot-and-mouth disease virus
Identifying when past exposure to an infectious disease will protect against newly emerging strains is central to understanding the spread and the severity of epidemics, but the prediction of viral cross-protection remains an important unsolved problem. For foot-and-mouth disease virus (FMDV) research in particular, improved methods for predicting this cross-protection are critical for predicting the severity of outbreaks within endemic settings where multiple serotypes and subtypes commonly co-circulate, as well as for deciding whether appropriate vaccine(s) exist and how much they could mitigate the effects of any outbreak. To identify antigenic relationships and their predictors, we used linear mixed effects models to account for variation in pairwise cross-neutralization titres using only viral sequences and structural data. We identified those substitutions in surface-exposed structural proteins that are correlates of loss of cross-reactivity. These allowed prediction of both the best vaccine match for any single virus and the breadth of coverage of new vaccine candidates from their capsid sequences as effectively as or better than serology. Sub-sequences chosen by the model-building process all contained sites that are known epitopes on other serotypes. Furthermore, for the SAT1 serotype, for which epitopes have never previously been identified, we provide strong evidence - by controlling for phylogenetic structure - for the presence of three epitopes across a panel of viruses and quantify the relative significance of some individual residues in determining cross-neutralization. Identifying and quantifying the importance of sites that predict viral strain cross-reactivity not just for single viruses but across entire serotypes can help in the design of vaccines with better targeting and broader coverage. These techniques can be generalized to any infectious agents where cross-reactivity assays have been carried out. As the parameterization uses pre-existing datasets, this approach quickly and cheaply increases both our understanding of antigenic relationships and our power to control disease
A subcellular tug of war involving three MYB-like proteins underlies a molecular antagonism in Antirrhinum flower asymmetry
The establishment of meristematic domains with different transcriptional activity is essential for many developmental processes. The asymmetry of the Antirrhinum majus flower is established by transcription factors with an asymmetric pattern of activity. To understand how this asymmetrical pattern is established, we studied the molecular mechanism through which the dorsal MYB protein RADIALIS (RAD) restricts the activity of the MYB transcription factor DIVARICATA (DIV) to the ventral region of the flower meristem. We show that RAD competes with DIV for binding with other MYB-like proteins, termed DRIF1 and DRIF2 (DIV- and-RAD-interacting-factors). DRIF1 and DIV interact to form a protein complex that binds to the DIV-DNA consensus region, suggesting that the DRIFs act as co-regulators of DIV transcriptional activity. In the presence of RAD, the interaction between DRIF1 and DIV bound to DNA is disrupted. Moreover, the DRIFs are sequestered in the cytoplasm by RAD, thus, preventing or reducing the formation of DRIF-DIV heterodimers in the nuclei. Our results suggest that in the dorsal region of the Antirrhinum flower meristem the dorsal protein RAD antagonises the activity of the ventral identity protein DIV in a subcellular competition for a DRIF protein promoting the establishment of the asymmetric pattern of gene activity in the Antirrhinum flower.- We are grateful to Roger Tsien for providing the plasmids with red fluorescent protein, Barry Causier and Brendan Davies for help in the screening of the Antirrhinum yeast-two hybrid library and Ulises Rosas for providing part of the cDNA sequence for DRIF2. We also thank Nicolas Arnaud and Alejandro Ferrando for providing BiFC plasmids, Desmond Bradley and Alexandra Rebocho for helpful comments on the manuscript and Lucilia Goreti Pinto and Grant Calder for helping with the confocal microscopy. This work was funded by FCT/COMPETE/FEDER with a project grant (ref. FCOMP-01-0124-FEDER-008818) and with a Royal Society International Joint Project grant (2008/R2). JR was supported by funding from FCT with a PhD grant (ref. SFRH/BD/75050/2010). The authors have no conflict of interest to declare
Accurate reconstruction of insertion-deletion histories by statistical phylogenetics
The Multiple Sequence Alignment (MSA) is a computational abstraction that
represents a partial summary either of indel history, or of structural
similarity. Taking the former view (indel history), it is possible to use
formal automata theory to generalize the phylogenetic likelihood framework for
finite substitution models (Dayhoff's probability matrices and Felsenstein's
pruning algorithm) to arbitrary-length sequences. In this paper, we report
results of a simulation-based benchmark of several methods for reconstruction
of indel history. The methods tested include a relatively new algorithm for
statistical marginalization of MSAs that sums over a stochastically-sampled
ensemble of the most probable evolutionary histories. For mammalian
evolutionary parameters on several different trees, the single most likely
history sampled by our algorithm appears less biased than histories
reconstructed by other MSA methods. The algorithm can also be used for
alignment-free inference, where the MSA is explicitly summed out of the
analysis. As an illustration of our method, we discuss reconstruction of the
evolutionary histories of human protein-coding genes.Comment: 28 pages, 15 figures. arXiv admin note: text overlap with
arXiv:1103.434
Novel host-specific iron acquisition system in the zoonotic pathogen Vibrio vulnificus
Vibrio vulnificus is a marine bacterium associated with human and fish (mainly farmed eels) diseases globally known as vibriosis. The ability to infect and overcome eel innate immunity relies on a virulence plasmid (pVvbt2) specific for biotype 2 (Bt2) strains. In the present study, we demonstrated that pVvbt2 encodes a host-specific iron acquisition system that depends on an outer membrane receptor for eel transferrin called Vep20. The inactivation of vep20 did not affect either bacterial growth in human plasma or virulence for mice, while bacterial growth in eel blood/plasma was abolished and virulence for eels was sig-nificantly impaired. Furthermore, vep20 is an iron-regulated gene overexpressed in eel blood during artificially induced vibriosis both in vitro and in vivo. Interestingly, homologues to vep20 were identified in the transferable plasmids of two fish pathogen species of broad-host range, Vibrio harveyi (pVh1) and Photobacterium damselae subsp. damselae (pPHDD1). These data suggest that Vep20 belongs to a new family of plasmid-encoded fish-specific transferrin receptors, and the acquisition of these plasmids through horizontal gene transfer is likely positively selected in the fish-farming environ-ment. Moreover, we propose Ftbp (fish transferrin binding proteins) as a formal name for this family of proteins
- …