140 research outputs found

    Geologically controlled sandy beaches: Their geomorphology, morphodynamics and classification

    Get PDF
    Beaches that are geologically controlled by rock and coral formations are the rule, not the exception. This paper reviews current understanding of geologically controlled beaches, bringing together a range of terminologies (including embayed beaches, shore platform beaches, relict beaches, and perched beaches among others) and processes, with the aim of exploring the multiple ways in which geology influences beach morphology and morphodynamics. We show how in addition to sediment supply, the basement geology influences where beaches will form by providing accommodation, and in the cross-shore, aspects of rock platform morphology such as elevation and slope are also important. Geologically controlled beaches can have significant variations in sediment coverage with seasons and storms, and geological controls have fundamental influences on their contemporary morphodynamics. This includes wave shadowing by headlands and rocky/coral formations inducing strong alongshore gradients in wave energy, resulting in corresponding variations in morphodynamic beach state and storm response. Geologically-induced rip currents such as shadow rips and deflection rips, and even mega-rips that can develop on embayed beaches during storms, are an integral feature of the nearshore circulation and morphodynamics of geologically controlled beaches. We bring these processes together by presenting a conceptual model of alongshore and cross-shore levels of geological control. In the longshore dimension, this ranges from beaches that are slightly embayed, through to highly embayed beaches where headlands dominate the entire beach morphodynamic response. In the cross-shore dimension, this ranges from beaches without discernible geological controls, through to relict beaches above the influence of the contemporary littoral zone. Given the prevalence of geologically controlled beaches along the world‘s coasts, it is paramount for coastal management to consider how these beaches differ from unconstrained beaches and avoid applying inappropriate models and tools, especially with our uncertain future climate

    Exploration of the polymorphic solid-state landscape of an amide-linked organic cage using computation and automation

    Get PDF
    Organic cages can possess complex, functionalised internal cavities that make them promising candidates for synthetic enzyme mimics. Conformationally flexible but chemically robust structures are needed for adaptable guest binding and catalysis, but these rapidly exchanging systems are difficult to resolve in solution. Here, we use inexpensive calculations and high-throughput crystallisation experiments to identify accessible cage conformations for a recently reported organic cage by ‘locking’ them in the solid state. The conformers identified exhibit a range of distances between the carboxylic acid groups in the internal cavity, suggesting adaptability towards binding a wide array of target guest molecules. The complexity of the observed crystal structures goes beyond what is possible with state-of-the-art crystal structure prediction

    Remove Debris Mission, From Concept to Orbit

    Get PDF
    The RemoveDebris mission will be the first European Active Debris Removal (ADR) missions to give an in orbit demonstration of the viability of a series of cost effective technologies that can be used to observe, capture and destroy space debris. RemoveDebris is a low cost mission performing key active debris removal (ADR) technology demonstrations including the use of a net, a harpoon, vision-based navigation (VBN) and a dragsail in a realistic space operational environment. For the purposes of the mission two CubeSats will be ejected and used as targets for experiments instead of real space debris, which is an important step towards a fully operational ADR mission. The craft has launched to the ISS on the 2nd of April 2018, on board a Dragon capsule (SpaceX CRS-14 ISS re-supply mission). From here the satellite is to be deployed via the NanoRacks Kaber system into an orbit of around 400 km. Aglietti 2 32nd Annual AIAA/USU Conference on Small Satellites This paper examines the design of the mission from initial concepts through to manufacture, AIT, testing and up to launch, and apart from a general consideration of the mission, will focus on the elements of design & testing that differ from a conventional mission

    Experimental Confirmation of a Predicted Porous Hydrogen‐Bonded Organic Framework

    Get PDF
    AbstractHydrogen‐bonded organic frameworks (HOFs) with low densities and high porosities are rare and challenging to design because most molecules have a strong energetic preference for close packing. Crystal structure prediction (CSP) can rank the crystal packings available to an organic molecule based on their relative lattice energies. This has become a powerful tool for the a priori design of porous molecular crystals. Previously, we combined CSP with structure‐property predictions to generate energy‐structure‐function (ESF) maps for a series of triptycene‐based molecules with quinoxaline groups. From these ESF maps, triptycene trisquinoxalinedione (TH5) was predicted to form a previously unknown low‐energy HOF (TH5‐A) with a remarkably low density of 0.374 g cm−3 and three‐dimensional (3D) pores. Here, we demonstrate the reliability of those ESF maps by discovering this TH5‐A polymorph experimentally. This material has a high accessible surface area of 3,284 m2 g−1, as measured by nitrogen adsorption, making it one of the most porous HOFs reported to date.</jats:p

    Map-A-Mole: greenspace area influences the presence and abundance of the European mole Talpa europaea in urban habitats

    Get PDF
    The European mole Talpa europaea is common across much of Britain. It has a unique fossorial lifestyle, and evidence of its presence is readily identified through the presence of characteristic molehills. Although molehills are often a common sight in urban greenspaces, moles are remarkably understudied, with very few studies to date exploring the urban ecology of moles. Here, we investigate if factors such as greenspace (largely urban parks and playing fields) area, intensity of management, distance to nearest patch, amount of time the patch had been isolated from other green patches, and the amount of urbanization (constructed surfaces) surrounding the patch, influence the distribution and abundance of urban moles. Mole signs (hills and surface runs) were counted in all discrete urban greenspaces (excluding domestic gardens and one private golf course) within an 89.5 km2 area in the UK town of Reading. We found that 17 out of 59 surveyed sites contained moles, with their presence being recorded in greenspaces with a minimum patch area of approximately 0.1 km2 (10 ha). Where present, the abundance of mole territories in the greenspaces was associated with both the area of greenspace and degree of urbanization within 150 m of the patch boundary. While the former was not surprising, the latter outcome may be a consequence of sites with an increased risk of flooding being home to fewer moles, and the surrounding area is also less likely to be built upon. This case study highlights how choices made in designing urban green infrastructure will determine which species survive in urban areas long into the future

    Phenology determines seasonal variation in ectoparasite loads in a natural insect population

    Get PDF
    1. The extent to which individuals are parasitised is a function of exposure to parasites and the immune response, which in ectotherms may be associated with temperature. 2. We test the hypothesis that seasonal variation in ectoparasite burden is driven by temperature using an extensive mark-release-recapture study of adult Coenagrion puella (L.) (Zygoptera) as a model system. Mite counts were taken both at capture and on a subset of subsequent recaptures over two entire, consecutive breeding seasons. 3. Emergence date was the most significant factor in determining individual differences in mite burden, and mean counts for individuals emerging on the same days showed strong unimodal relationships with time of season. Subsequent recounting of mites on a subset of individuals showed that patterns of loss of mites were similar between seasons. 4. While temperature did not significantly affect mite burdens within seasons and ectoparasite prevalence was very similar across the two seasons, intensity of infection and rate of mite gain in unparasitised individuals were significantly higher in the cooler season. 5. We demonstrate that, while temperature may modulate the invertebrate immune response, this modulation does not manifest in variations in mite burdens in natural populations
    • 

    corecore