153 research outputs found

    Matched detectors as definers of force

    Full text link
    Although quantum states nicely express interference effects, outcomes of experimental trials show no states directly; they indicate properties of probability distributions for outcomes. We prove categorically that probability distributions leave open a choice of quantum states and operators and particles, resolvable only by a move beyond logic, which, inspired or not, can be characterized as a guess. By recognizing guesswork as inescapable in choosing quantum states and particles, we free up the use of particles as theoretical inventions by which to describe experiments with devices, and thereby replace the postulate of state reductions by a theorem. By using the freedom to invent probe particles in modeling light detection, we develop a quantum model of the balancing of a light-induced force, with application to models and detecting devices by which to better distinguish one source of weak light from another. Finally, we uncover a symmetry between entangled states and entangled detectors, a dramatic example of how the judgment about what light state is generated by a source depends on choosing how to model the detector of that light.Comment: 30 pages, 4 figs, LaTeX; new Introduction; new material in Secs. 4 & 5; new Sec. 6; 1 new figure, added reference

    The spectral dimension of generic trees

    Full text link
    We define generic ensembles of infinite trees. These are limits as NN\to\infty of ensembles of finite trees of fixed size NN, defined in terms of a set of branching weights. Among these ensembles are those supported on trees with vertices of a uniformly bounded order. The associated probability measures are supported on trees with a single spine and Hausdorff dimension dh=2d_h =2. Our main result is that their spectral dimension is ds=4/3d_s=4/3, and that the critical exponent of the mass, defined as the exponential decay rate of the two-point function along the spine, is 1/3

    Random walks on combs

    Full text link
    We develop techniques to obtain rigorous bounds on the behaviour of random walks on combs. Using these bounds we calculate exactly the spectral dimension of random combs with infinite teeth at random positions or teeth with random but finite length. We also calculate exactly the spectral dimension of some fixed non-translationally invariant combs. We relate the spectral dimension to the critical exponent of the mass of the two-point function for random walks on random combs, and compute mean displacements as a function of walk duration. We prove that the mean first passage time is generally infinite for combs with anomalous spectral dimension.Comment: 42 pages, 4 figure

    Hurricanes overcome migration lag and shape intraspecific genetic variation beyond a poleward mangrove range limit

    Get PDF
    Expansion of many tree species lags behind climate‐change projections. Extreme storms can rapidly overcome this lag, especially for coastal species, but how will storm‐driven expansion shape intraspecific genetic variation? Do storms provide recruits only from the nearest sources, or from more distant sources? Answers to these questions have ecological and evolutionary implications, but empirical evidence is absent from the literature. In 2017, Hurricane Irma provided an opportunity to address this knowledge gap at the northern range limit of the neotropical black mangrove (Avicennia germinans ) on the Atlantic coast of Florida, USA. We observed massive post‐hurricane increases in beach‐stranded A. germinans propagules at, and past, this species’ present‐day range margin when compared to a previously‐surveyed, non‐hurricane year. Yet, propagule dispersal does not guarantee subsequent establishment and reproductive success (i.e., effective dispersal). We also evaluated prior effective dispersal along this coastline with isolated A. germinans trees identified beyond the most northern established population. We used 12 nuclear microsatellite loci to genotype 896 hurricane‐driven drift propagules from nine sites and 10 isolated trees from four sites, determined their sources of origin, and estimated dispersal distances. Almost all drift propagules and all isolated trees came from the nearest sources. This research suggests that hurricanes are a prerequisite for poleward range expansion of a coastal tree species and that storms can shape the expanding gene pool by providing almost exclusively range‐margin genotypes. These insights and empirical estimates of hurricane‐driven dispersal distances should improve our ability to forecast distributional shifts of coastal species

    Information theory analysis of Australian humpback whale song

    Get PDF
    Songs produced by migrating whales were recorded off the coast of Queensland, Australia, over six consecutive weeks in 2003. Forty-eight independent song sessions were analyzed using information theory techniques. The average length of the songs estimated by correlation analysis was approximately 100 units, with song sessions lasting from 300 to over 3100 units. Song entropy, a measure of structural constraints, was estimated using three different methodologies: (1) the independently identically distributed model, (2) a first-order Markov model, and (3) the nonparametric sliding window match length (SWML) method, as described by Suzuki et al. [(2006). “Information entropy of humpback whale song,” J. Acoust. Soc. Am. 119, 1849–1866]. The analysis finds that the song sequences of migrating Australian whales are consistent with the hierarchical structure proposed by Payne and McVay [(1971). “Songs of humpback whales,” Science 173, 587–597], and recently supported mathematically by Suzuki et al. (2006) for singers on the Hawaiian breeding grounds. Both the SWML entropy estimates and the song lengths for the Australian singers in 2003 were lower than that reported by Suzuki et al. (2006) for Hawaiian whales in 1976–1978; however, song redundancy did not differ between these two populations separated spatially and temporally. The average total information in the sequence of units in Australian song was approximately 35 bits/song. Aberrant songs (8%) yielded entropies similar to the typical songs

    Refined forest land use classification with implications for United States national carbon accounting

    Get PDF
    The United States provides annual estimates of carbon sources and sinks as part of its National Green-house Gas Inventory (NGHGI). Within this effort, carbon stocks and fluxes are reported for six land use categories that are relevant to economic sectors and land use policy. The goal of this study is to develop methodologies that will allow the US to align with an internationally agreed upon forest land use definition which requires forest to be able to reach 5 m in height at maturity. Models to assess height potential are available for a majority of US forests except for woodland ecosystems. We develop a set of models to assess height potential in these systems. Our results suggest that ∼13.5 million ha of forests are unlikely to meet the international definition of forests due to environmental limitations to maximum attainable height. The incorporation of this height criteria in the NGHGI results in a carbon stock transfer of ∼848 Tg from the forest land use to woodland land use (a sub-category of grasslands) with minimal effect on sequestration rates. The development of a forest land use definition sensitive to climatic factors in this study enables a land use classification system that can be responsive to climate change effects on land uses themselves while being more consistent across a host of international and domestic carbon reporting efforts

    Role of Inn1 and its interactions with Hof1 and Cyk3 in promoting cleavage furrow and septum formation in S. cerevisiae

    Get PDF
    Cytokinesis requires coordination of actomyosin ring (AMR) contraction with rearrangements of the plasma membrane and extracellular matrix. In Saccharomyces cerevisiae, new membrane, the chitin synthase Chs2 (which forms the primary septum [PS]), and the protein Inn1 are all delivered to the division site upon mitotic exit even when the AMR is absent. Inn1 is essential for PS formation but not for Chs2 localization. The Inn1 C-terminal region is necessary for localization, and distinct PXXP motifs in this region mediate functionally important interactions with SH3 domains in the cytokinesis proteins Hof1 (an F-BAR protein) and Cyk3 (whose overexpression can restore PS formation in inn1Δ cells). The Inn1 N terminus resembles C2 domains but does not appear to bind phospholipids; nonetheless, when overexpressed or fused to Hof1, it can provide Inn1 function even in the absence of the AMR. Thus, Inn1 and Cyk3 appear to cooperate in activating Chs2 for PS formation, which allows coordination of AMR contraction with ingression of the cleavage furrow
    corecore