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Abstract 19 

Expansion of many tree species lags behind climate-change projections. Extreme storms can 20 

rapidly overcome this lag, especially for coastal species, but how will storm-driven expansion 21 

shape intraspecific genetic variation? Do storms provide recruits only from the nearest sources, 22 

or from more distant sources? Answers to these questions have ecological and evolutionary 23 

implications, but empirical evidence is absent from the literature. In 2017, Hurricane Irma 24 

provided an opportunity to address this knowledge gap at the northern range limit of the 25 

neotropical black mangrove (Avicennia germinans) on the Atlantic coast of Florida, USA. We 26 

observed massive post-hurricane increases in beach-stranded A. germinans propagules at, and 27 

past, this species’ present-day range margin when compared to a previously-surveyed, non-28 

hurricane year. Yet, propagule dispersal does not guarantee subsequent establishment and 29 

reproductive success (i.e., effective dispersal). We also evaluated prior effective dispersal along 30 

this coastline with isolated A. germinans trees identified beyond the most northern established 31 

population. We used 12 nuclear microsatellite loci to genotype 896 hurricane-driven drift 32 

propagules from nine sites and 10 isolated trees from four sites, determined their sources of 33 

origin, and estimated dispersal distances. Almost all drift propagules and all isolated trees came 34 

from the nearest sources. This research suggests that hurricanes are a prerequisite for poleward 35 

range expansion of a coastal tree species and that storms can shape the expanding gene pool by 36 

providing almost exclusively range-margin genotypes. These insights and empirical estimates of 37 

hurricane-driven dispersal distances should improve our ability to forecast distributional shifts of 38 

coastal species. 39 

 40 
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 43 

INTRODUCTION 44 

Species distributional shifts have become commonplace in response to anthropogenic climate 45 

change (Pecl et al., 2017; Scheffers et al., 2016). Yet, distributional responses of some species 46 

lag behind these changes (Lenoir & Svenning, 2015; Poloczanska et al., 2013). In particular, 47 

actual migration of many tree species lags behind projections based on current rates of climatic 48 

change and the consequent alterations in habitat suitability (Alexander et al., 2018; Bertrand et 49 

al., 2011; Gray & Hamann, 2013; Zhu, Woodall, & Clark, 2012). This phenomenon, known as 50 

migration lag, is also forecast to continue or worsen in certain contexts (Gray & Hamann, 2013; 51 

Liang, Duveneck, Gustafson, Serra-Diaz, & Thompson, 2018; Prasad, Gardiner, Iverson, 52 

Matthews, & Peters, 2013), and can generate changes in forest structure, productivity, and 53 

function that have wide-reaching ecosystem-level consequences (Bonan, 2008; Solomon & 54 

Kirilenko, 1997). 55 

Modelling efforts to project future distributional shifts are complicated by the fact that 56 

numerous factors may constrain plant migration (Corlett & Westcott, 2013; Svenning & Sandel, 57 

2013). Dispersal limitation and niche-related constraints are the two principal factors attributed 58 

to migration lag, but temporal variation in these factors is not often considered (Renwick & 59 

Rocca, 2015). Episodic events, such as disturbance (Boisvert-Marsh, Périé, & de Blois, 2019; 60 

Lembrechts et al., 2016) or extreme climate events (Wernberg et al., 2013), can quickly 61 

overcome these migration constraints and lead to periods of rapid range shifts (Renwick & 62 
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Rocca, 2015). As a result, migration rates are not constant over time, and instead, colonisation of 63 

new areas will often be limited to these transient periods of time (Zeigler & Fagan, 2014). 64 

Extreme storm events (e.g., tropical cyclones, also known as typhoons or hurricanes) are one 65 

mechanism that can abruptly overcome migration constraints, in particular for coastal species 66 

(Lugo, 2008; Nathan et al., 2008). This is especially true for the Caribbean and Gulf of Mexico, a 67 

region frequently impacted by hurricanes (Walker, Lodge, Brokaw, & Waide, 1991) and forecast 68 

to experience more intense storms in the future (Murakami, Levin, Delworth, Gudgel, & Hsu, 69 

2018). Numerous examples demonstrate how hurricanes are important vectors for the expansion 70 

of diverse taxa within the region, including fish (Johnston & Purkis, 2015), insects (Andraca-71 

Gómez et al., 2015), and plants (Bhattarai & Cronin, 2014; Kendall, Battista, & Hillis-Starr, 72 

2004). However, despite the well-recognised influence of hurricanes on distributions of species, 73 

we lack an understanding of how hurricane-driven expansion can impact variation within a 74 

species. Do hurricanes provide new recruits simply from the nearest sources? Or, do these high-75 

energy storms provide the conditions necessary for a greater influence of long-distance 76 

dispersal? Answers to these questions have important implications for species ecology and 77 

evolution with climate change (Nadeau & Urban, 2019 and citations within). Moreover, 78 

quantitative analyses of plant dispersal driven by extreme meteorological events are absent from 79 

the literature (Nathan et al., 2008; Schurr et al., 2018), yet they would provide empirical 80 

estimates of dispersal distances that are needed to improve projections of future distributional 81 

shifts (Thuiller et al., 2008). 82 

Hurricane Irma provided an opportunity to address this knowledge gap at the northern range 83 

limit of the neotropical black mangrove (Avicennia germinans) on the Atlantic coast of Florida, 84 

USA. This catastrophic storm, among the strongest and costliest Atlantic hurricanes ever 85 
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recorded, devastated areas across the northern Caribbean and Florida (Cangialosi, Latto, & Berg, 86 

2018), with massive impacts to coastal forest ecosystems (Branoff, 2019; Radabaugh et al., 87 

2019; Ross et al., 2019). From 10-12 September, 2017, Hurricane Irma progressively weakened 88 

from a category 4 storm in the Florida Keys to a tropical storm in north Florida (Cangialosi et al., 89 

2018). Although the storm weakened quickly over Florida, the wind field was extensive, with the 90 

strongest tropical-storm-force winds experienced on the northeast coast (Cangialosi et al., 2018) 91 

(see Figure S1 for hurricane path and wind speeds).  92 

In this study, we documented numbers of A. germinans propagules stranded on beaches 93 

along this northeast coast following Hurricane Irma and compared these numbers to those found 94 

previously during a non-hurricane year. We then used an extensive population-genetic data set 95 

from across the Florida A. germinans distribution (Kennedy, Preziosi, Rowntree, & Feller, 96 

2020a) to determine the origin of these drift propagules and to quantify hurricane-driven 97 

dispersal distances. It is important to highlight that dispersal to these beaches (where propagules 98 

cannot establish) is not analogous to effective dispersal, which would consist of propagule 99 

transport plus successful establishment and subsequent reproductive success at the recipient 100 

location (Auffret et al., 2017). To assess effective dispersal, we also documented multiple newly-101 

discovered A. germinans trees found past the most northern established population of this 102 

species. For these trees, we compared measures of their potential reproductive output to those of 103 

conspecifics at the present-day range margin and used the same reference data set to determine 104 

their source of origin. We refer to these isolated A. germinans as ‘vagrant trees’ throughout this 105 

publication. Vagrant trees provide evidence of prior effective dispersal along this coastline and 106 

insights into the potential filter that establishment may apply to the pool of available drift 107 

propagules. 108 
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Here, we asked: (a) Were drift-propagule densities higher following Hurricane Irma 109 

compared to a non-hurricane year?; (b) Are vagrant trees less reproductive than conspecifics at 110 

the present-day range margin?; (c) Where did drift propagules (i.e., hurricane-driven dispersal) 111 

and vagrant trees (i.e., prior effective dispersal) come from? Our findings provide novel insights 112 

into how hurricanes can overcome migration lag and shape intraspecific genetic variation in a 113 

coastal tree species and should improve our ability to forecast future distributional shifts. 114 

 115 

MATERIALS AND METHODS 116 

Model species 117 

Mangroves are intertidal forests that provide ecosystem services of ecological and economic 118 

importance to coastal ecosystems worldwide (Lee et al., 2014). As coastal species, many 119 

mangrove forests are periodically impacted by hurricanes that can result in widespread tree 120 

mortality and shifts in forest structure (Krauss & Osland, 2020; Osland et al., 2020). Hurricane-121 

driven dispersal of hydrochorous (water-dispersed) mangrove propagules is an important 122 

mechanism for forest regeneration following these episodic events and can continue for extended 123 

periods post-storm (Krauss & Osland, 2020), and may facilitate long-distance poleward 124 

expansion (Van der Stocken, Wee, et al., 2019). 125 

The widespread neotropical black mangrove (Avicennia germinans) is the predominant 126 

mangrove species at northern distributional limits in the United States (Lonard, Judd, Summy, 127 

DeYoe, & Stalter, 2017). Atlantic Florida A. germinans inhabit protected estuaries with access to 128 

the ocean via a series of inlets. Propagules generally abscise from maternal trees in great 129 

numbers from late August through October, and some eventually exit these estuaries via inlets 130 

and become stranded on Atlantic coast beaches (I.C. Feller, personal observation). Long-131 
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distance dispersal of this species is possible as its propagules remain viable even after extensive 132 

flotation periods (Alleman & Hester, 2011b; Rabinowitz, 1978), further supported by genetic 133 

evidence for trans-oceanic dispersal (Cerón-Souza et al., 2015; Mori, Zucchi, Sampaio, & Souza, 134 

2015; Nettel & Dodd, 2007). However, A. germinans propagules are generally retained within 135 

estuaries and most dispersal is restricted to short distances (Sousa, Kennedy, Mitchell, & 136 

Ordóñez L, 2007), as evidenced by strong within-estuary spatial genetic structure (Cerón-Souza, 137 

Bermingham, McMillan, & Jones, 2012). Establishment success for A. germinans propagules is 138 

also inversely related to flotation time (Alleman & Hester, 2011b; Simpson, Osborne, & Feller, 139 

2017). 140 

Atlantic Florida mangroves decline in abundance with latitude and are eventually replaced 141 

by temperate salt-marsh vegetation at their northern range margin (Kangas & Lugo, 1990), 142 

where A. germinans exhibits considerable reductions in genetic variation compared to 143 

conspecifics farther south (Kennedy, Preziosi, Rowntree, & Feller, 2020b). The frequency and 144 

intensity of winter freezes has been linked to the northern extent of mangroves along this 145 

coastline (Cavanaugh et al., 2018; Osland et al., 2017), with mangrove proliferation (in 146 

particular, A. germinans) at this northern range margin for several decades due to a paucity of 147 

extreme freeze events (Cavanaugh et al., 2019, 2014; Osland et al., 2018). Further range 148 

expansion of A. germinans is forecast as winter freezes in the region become even less frequent 149 

with climate change (Cavanaugh et al., 2019, 2015). 150 

 151 

Beach surveys 152 

We adapted methods used to quantify mangrove dispersal (Clarke, 1993; Sengupta, Middleton, 153 

Yan, Zuro, & Hartman, 2005) to survey Atlantic Florida A. germinans propagule densities on 154 
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beaches adjacent to inlets. We surveyed two beaches at the established range margin of this 155 

species (29.71 – 29.91°N) (Spalding, Kainuma, & Collins, 2010), three beaches past the range 156 

margin (~40-75 km to the north) where no established mangrove populations exist (30.40 – 157 

30.70°N), and one lower-latitude beach within the mangrove-dominated continuous range core 158 

as a comparison (27.47°N) (Figure 1). We performed equivalent surveys on 24-28 September, 159 

2014 (a non-hurricane year) and 14-16 October, 2017 (five weeks after Hurricane Irma made 160 

landfall in Florida), except for the most northern beach that was only surveyed in 2017. At each 161 

survey site, we ran three to eight 100 m transects along the high tide line and counted all 162 

putatively-viable drift propagules found within 1 m of the transect line (i.e., decomposed 163 

propagules were noted, but not included in these counts). Numbers of transects varied depending 164 

on the length of the beach, and each transect line was separated from the next by 100 m. We 165 

tested for differences in propagule densities between the two collection years (n = 5 sites per 166 

year) with a two-sample Fisher-Pitman permutation test, with 104 re-samplings, in the R-package 167 

coin (Hothorn, Hornik, van de Wiel, & Zeileis, 2008) in R v3.6.0 (R Core Team, 2013). 168 

We collected all putatively-viable drift propagules during the 2017 post-Hurricane Irma 169 

beach surveys. Propagules from each survey site were stored together in plastic bags during field 170 

collections. For three of the six surveyed beaches, we subset samples into two collections that 171 

corresponded to areas within an inlet and those outside along the Atlantic ocean (i.e., MZ and 172 

MB, F2 and F1, each respectively), or to areas separated by an inlet (i.e., H, LT) (Table 1; Figure 173 

1b, c). We haphazardly chose 100 propagules of all sizes from each of these nine collection sites 174 

for genetic analysis (n = 900 total propagules) and stored them at -20°C. 175 

We assessed viability of these post-Hurricane Irma drift propagules with another subset of 176 

100 propagules from each of the nine collection sites (n = 900 total propagules). We placed 177 
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propagules in shallow, plastic trays with a thin layer of wet potting soil/sand until root radicles 178 

developed, and then transferred them to individual tree tubes (Ray Leach Cone-tainers, Stuewe 179 

and Sons., Inc.; 2.5 cm diameter, 12.1 cm length; 49 ml volume) filled with a 2:1 mixture of 180 

commercial potting soil and sand. We placed tubes into racks of 100 and allowed propagules to 181 

grow in non-saline, deionized water in flooded plastic tubs with the water depth maintained at 10 182 

cm. All seedlings were grown, with no nutrient additions, in a walk-in environmental growth 183 

chamber at the Smithsonian Environmental Research Center (Maryland, USA), with 184 

chamber temperature and humidity maintained throughout this period (0:00-6:00: 16°C, 6:00-185 

12:00: 21.5°C, 12:00-18:00: 27°C, 18:00-0:00: 21.5°C; 65% RH). We quantified the number of 186 

propagules that established and began growing true leaves (i.e., post-cotyledons). 187 

 188 

Vagrant tree surveys 189 

We conducted coastal surveys by vessel over a 12-month period prior to Hurricane Irma (July 190 

2016 to June 2017) along the intercoastal waterway between St Augustine, Florida, and 191 

Cumberland Island, Georgia (29.9 – 31.0°N), an area past the most northern established A. 192 

germinans population. Surveys were conducted by trolling close to shore at low speed and 193 

visually searching for trees growing within the salt marsh. A leaf was collected from each 194 

discovered tree and dehydrated in silica gel for genetic analysis. 195 

In August 2018, we revisited sites where we had previously found vagrant trees and 196 

identified four adult trees producing flowers. For these four trees, we measured height and 197 

potential reproductive output as mean inflorescence per terminal stem. We haphazardly selected 198 

a large mature branch, counted terminal stems (aiming for at least 60), and then counted how 199 

many terminal stems had inflorescence. We divided total inflorescence count by total terminal 200 
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stem count to calculate inflorescence per terminal stem. We repeated this process three times for 201 

each tree and used mean values for analysis. We then selected three trees at the present-day A. 202 

germinans range margin (29.727°N, 81.239°W) to compare with these four reproductive vagrant 203 

trees. We repeated measures of height, terminal stem counts, and inflorescence counts on these 204 

three range-margin trees. We selected these particular trees because they were larger than 205 

neighbouring trees, and presumably the most mature in the area. We tested for differences in 206 

mean inflorescence per terminal stem between the vagrant trees (n = 4) and range-margin trees (n 207 

= 3) with a two-sample Fisher-Pitman permutation test, with 104 re-samplings, in the R-package 208 

coin (Hothorn et al., 2008). 209 

 210 

DNA isolation and Microsatellite genotyping 211 

For drift propagules, we removed the cotyledons and isolated genomic DNA from 50 mg of 212 

frozen hypocotyl/radicle tissue with the DNeasy 96 Plant Kit (Qiagen, Hilden, Germany) 213 

following the standard protocol. For vagrant trees, we isolated genomic DNA from 20 mg of 214 

dried leaf tissue with the DNeasy Plant Mini Kit (Qiagen, Hilden, Germany) following the 215 

standard protocol, with an extended incubation of 45 minutes. We genotyped all samples at 12 216 

previously-developed nuclear microsatellite loci (Cerón-Souza et al., 2012; Cerón-Souza, 217 

Rivera-Ocasio, Funk, & McMillan, 2006; Mori, Zucchi, Sampaio, & Souza, 2010; Nettel, Rafii, 218 

& Dodd, 2005) according to the protocol outlined in Kennedy, Sammy, Rowntree, & Preziosi 219 

(2020) for drift propagules and the protocol outlined in Kennedy, Preziosi, et al. (2020b) for 220 

vagrant trees. We performed PCR on a Prime thermal cycler (Techne, Straffordshire, UK), 221 

analysed fragments on an Applied Biosystems 3730 DNA Analyzer (Applied Biosystems, Foster 222 

City, California, USA) with LIZ 500 size standard, and scored alleles in the R-package Fragman 223 
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(Covarrubias-Pazaran, Diaz-Garcia, Schlautman, Salazar, & Zalapa, 2016). We re-amplified and 224 

re-genotyped 5% of the drift propagule DNA samples to estimate a study error rate (Bonin et al., 225 

2004), and did the same for all of the vagrant tree DNA samples to ensure we had the correct 226 

multi-locus genotypes. Microsatellite genotype data are available at the Dryad digital repository 227 

(Kennedy, Dangremond, et al., 2020). 228 

 229 

Genetic assignments 230 

For all genetic assignments, we used GENECLASS2 (Piry et al., 2004) to calculate (1) the 231 

probability that each individual (i.e., multi-locus genotype) could belong to each potential source 232 

(based on the allele frequencies within each source) with the Paetkau et al. (2004) Monte Carlo 233 

re-sampling method and 103 resampled individuals, and (2) source log-likelihood with the 234 

Rannala and Mountain (1997) Bayesian assignment method. For potential sources, we used a 235 

subset of an A. germinans reference data set with trees from 32 Florida collection sites that were 236 

genotyped at the same 12 microsatellite loci (n = 860 individuals; Kennedy, Preziosi, et al., 237 

2020a) (Figure S2). Simulations demonstrate that the Rannala & Mountain (1997) Bayesian 238 

assignment method can achieve 100% correct assignments with ≥10 microsatellite loci, 30-50 239 

sampled individuals from each of 10 populations, and inter-population FST = 0.1, with reduced 240 

success at lower FST (Cornuet, Piry, Luikart, Estoup, & Solignac, 1999; Waples & Gaggiotti, 241 

2006). Hence, we used inter-site FST ≥ 0.1 as a threshold to reduce the entire reference data set 242 

into 12 potential sources that encompass the entire Florida A. germinans distribution (Figure 1a; 243 

see Appendix S1, Table S1-S2 for detailed description). 244 

Prior to our assignments of drift propagules and vagrant trees, we used known-origin 245 

propagules to test the power of the assignment analyses and to define a priori confidence 246 
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thresholds (similar to methods outlined in Sinclair et al., 2018). Known-origin propagules were 247 

collected at three of the 12 potential sources (n = 50 propagules from a single tree for each site) 248 

and were genotyped at the same 12 microsatellite loci for a mating system study (Kennedy, 249 

Sammy, et al., 2020) (Figure S2). As we knew the origin of these propagules, we used these 250 

assignment results to define the (1) p-value for source exclusion and (2) acceptance threshold for 251 

unambiguous assignments based on the assignment score of the most-likely source (i.e., the 252 

relative likelihood of this source compared to all other sources; Piry et al. 2004) for subsequent 253 

genetic assignments of drift propagules and vagrant trees.  254 

For each unambiguous assignment of a drift propagule or vagrant tree, we measured the 255 

approximate over-water dispersal distance from the assigned source in Google Earth Pro 256 

7.3.2.5776. We measured dispersal as over-water distances because A. germinans propagules are 257 

hydrochorous (i.e., water is the predominant dispersal vector), but we cannot be certain how 258 

hurricane-force winds may have influenced propagule dispersal pathways. As such, we also 259 

measured Euclidean distances from assigned sources in the R-package geosphere (Hijmans, 260 

Williams, & Vennes, 2019) as the most conservative estimate possible of dispersal distances. 261 

 262 

RESULTS 263 

Beach surveys 264 

In 2014, under non-storm conditions, we found a range from 0 to 317 A. germinans propagules at 265 

five survey sites. We observed highest densities at the lower-latitude, within-range-core 266 

comparison site (27.47°N, 0.26 propagules/m2), minimal propagule numbers at the two range-267 

margin sites (29.71°N, 0.001 propagules/m2; 29.91°N, 0.07 propagules/m2), and no propagules at 268 

the two sites past the range margin (30.40°N, 30.49°N) (Table S3; Figure 2). In 2017, five weeks 269 
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after Hurricane Irma, we found a massive increase in propagule numbers, with a range from 329 270 

to 3,048 A. germinans propagules at six survey sites from 27.47 to 30.70°N (Table S3). 271 

Propagules were present at higher densities post-hurricane (range: 0.34-10.16 propagules/m2) 272 

than under non-storm conditions (two-sample Fisher-Pitman permutation test, Z = -1.78, p = 273 

0.009; Figure 2). We observed highest post-hurricane densities at the two range-margin sites 274 

(29.71°N, 4.10 propagules/m2; 29.91°N, 10.16 propagules/m2) where propagule numbers were 275 

orders of magnitude higher than under non-storm conditions (29.71°N, 2014: 2 propagules, 276 

2017: 2,462 propagules; 29.91°N, 2014: 97 propagules, 2017: 3,048 propagules) (Table S3; 277 

Figure 2). Almost all post-hurricane drift propagules were viable as 99% (894 of 900) of those 278 

planted established and produced true leaves (i.e., post-cotyledons) in the environmental growth 279 

chamber. 280 

 281 

Vagrant tree surveys 282 

We identified a total of 11 A. germinans (10 trees, one seedling) at four locations beyond the 283 

most northern established population of this species (Table 2; Figure 1b, c). From south to north, 284 

we first identified two trees on the Tolomato River (30.11oN) that are the documented 285 

northernmost A. germinans (Williams et al., 2014). Second, we found five trees at Fort George 286 

Inlet (30.43oN). Two larger trees were each isolated from the others by approximately 320 m and 287 

1 km, while a third larger tree was located 40-55 m from two smaller trees. Third, we found two 288 

trees and one seedling, which was not sampled to avoid potential damage to its photosynthetic 289 

ability, on the north of Big Talbot Island (30.48oN). The larger of the two trees was located 25 m 290 

from the smaller tree. Fourth, we found one tree towards the south of Amelia Island (30.52oN). 291 
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The four vagrant trees that were reproductive (identified at three of the four locations) 292 

ranged in height from 183 to 280 cm, and the three trees sampled farther south at the range 293 

margin ranged in height from 340 to 400 cm (Figure 3a). Mean inflorescence per terminal stem 294 

was not statistically different between these vagrant trees and range-margin trees (Z = 0.80, p = 295 

0.57), with a range of 0.44-1.05 inflorescence/stem and 0.41-0.67 inflorescence/stem, 296 

respectively (Figure 3b). One vagrant tree (FG3) was notably more fecund than the other 297 

measured trees (Figure 3b). 298 

 299 

Genotyping and Genetic assignments 300 

Drift propagules 301 

We genotyped a total of 896 drift propagules (n = 99-100 per survey site; Table 1). We observed 302 

a low estimated error rate of 0.97% (6 errors out of 621 allele comparisons). The six individuals, 303 

that each exhibited a single locus-specific error, were re-amplified a third time and we used the 304 

consensus genotype for assignment analyses. 305 

The probability that each of the 150 known-origin propagules belonged to their respective 306 

source ranged from 0.001 to 0.99 (mean = 0.44; Appendix S1). A total of 97% (146 of 150) of 307 

these propagules were correctly assigned to their source, with the highest assignment score for a 308 

mis-assigned propagule of 0.88 (Appendix S1, Table S4). Based on these results, we assigned the 309 

following confidence thresholds to subsequent assignment analyses of drift propagules and 310 

vagrant trees. We defined p < 0.001, the lowest probability observed, as the threshold to exclude 311 

a potential source. We also defined an assignment score ≥ 0.91 as the acceptance threshold for an 312 

unambiguous assignment, based on the highest score for a mis-assigned, known-origin 313 
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propagule. This conservative acceptance threshold indicates that a multi-locus genotype must be 314 

at least 10x more likely to belong to the assigned source than to any other potential source. 315 

None of the 896 drift propagules were excluded from all 12 potential sources (i.e., p > 0.001 316 

for at least one source; Table S5), which suggests that all the genotyped drift propagules were 317 

sourced from Florida populations. We unambiguously assigned 56% of drift propagules from the 318 

eight survey sites at or past the range margin (448 of 796), with a range within-site from 49% 319 

(site code: H) to 68% (site code: MB) (Table 1, Table S6). A total of 89% (400 of 448) of these 320 

unambiguous assignments were sourced from the range margin (source code: N/GS, GN), 9% 321 

(40 of 448) were sourced from the nearest within-range-core source (source code: C/Sp; over-322 

water distance: 75-185 km) and <2% (8 of 448) were transported over longer distances from the 323 

Atlantic (East) and Gulf (West) coasts of Florida (over-water distance: 124-1,135 km) (Table 1; 324 

Figure 4). Each of these eight survey sites exhibited similar assignment patterns (i.e., 86-100% 325 

assigned to range-margin sources), except for the most southern range-margin site (site code: 326 

MZ; Figure 4). Almost half of the unambiguous assignments at MZ (46%; 25 of 54) were 327 

sourced to the nearest within-range-core source (39%) or via longer distances (7%; over-water 328 

distance: 225-1,135 km) (Figure 4). We unambiguously assigned fewer drift propagules at the 329 

lower-latitude, within-range-core comparison site (31 of 100; Table 1, Table S6), but observed a 330 

similar pattern to the more northern survey sites. Most propagules (68%; 21 of 31) were assigned 331 

to the nearest source (source code: A/Sb), with 16% (5 of 31) from adjacent sources (source 332 

code: NK/MA, PI), and 16% (5 of 31) via longer distances from sources on the Gulf (West) coast 333 

of Florida (over-water distance: 440-870 km) (Table 1; Figure 4). Euclidean distances across all 334 

unambiguous assignments (n = 479; median: 74 km, range: 1-457 km) were nearly identical to 335 

over-water dispersal distances (n = 479; median: 74 km, range: 1-1,135 km), except for the 336 



16 
 

limited number (8 of 479) of dispersal events at the longest distance intervals (Table S6; Figure 337 

S3). These eight dispersal events were considerably shorter based on Euclidean distance (range: 338 

184-457 km) compared to over-water distance (range: 434-1,135 km) (Figure S3). 339 

Applying confidence thresholds to assignment analyses reduces the risk of incorrect 340 

assignments, but also increases the number of unassigned individuals (Roques, Duchesne, & 341 

Bernatchez, 1999). Across all nine survey sites, 417 of 896 drift propagules (47% of all samples) 342 

were not unambiguously assigned to a source. Yet, if no acceptance threshold is used and 343 

sources are assigned simply based on the lowest log-likelihood, assignment results were 344 

equivalent to those presented here (Table S7). 345 

 346 

Vagrant trees 347 

Each of the 10 vagrant trees exhibited consistent multi-locus genotypes across two, independent 348 

PCR. In addition, multi-locus genotypes were consistent with two smaller trees at Fort George 349 

Inlet (30.43oN) and one smaller tree at Big Talbot Island (30.48oN) being offspring of adjacent 350 

larger trees (Table 2; Appendix S2). As such, these putative offspring were not included in 351 

assignment analyses. 352 

None of the seven vagrant trees included in assignment analyses were excluded from all 12 353 

sources, with highest probabilities from the two range-margin sources and the nearest within-354 

range-core source (Table S5). We unambiguously assigned three of the seven vagrant trees (from 355 

two of the four sampled locations), and all three trees were sourced to the most southern range-356 

margin source (source code: N/GS; Table 2, Table S6). The first and second most-likely sources 357 

for the remaining four vagrant trees were a combination of the two range-margin and nearest 358 
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within-range-core sources (Table S6). Hence, although we could not unambiguously assign a 359 

source, these four trees also came from the nearest potential sources. 360 

 361 

DISCUSSION 362 

Migration lag in trees may be the product of multiple constraints, but episodic events can quickly 363 

overcome these constraints and lead to transient periods of rapid range shifts (Renwick & Rocca, 364 

2015). This study highlights how hurricanes create the conditions needed to drive range 365 

expansion at a northern distributional limit of the neotropical black mangrove (Avicennia 366 

germinans) and can shape patterns of genetic variation in expanding populations of this species. 367 

These insights, along with empirical estimates of hurricane-driven dispersal distances, should 368 

improve our ability to forecast future distributional shifts of this species, and other coastal 369 

species often impacted by extreme storm events. 370 

 371 

Hurricanes are a vector of range expansion 372 

Climate models predict that, at a global scale, storm numbers may decline in the future, but that 373 

the strongest storms will become more intense and that sea level rise will exacerbate storm surge 374 

effects (Walsh et al., 2016 and citations within). In particular, a greater prevalence of major 375 

hurricanes (≥ category 3) is forecast in the Caribbean and Gulf of Mexico as the tropical North 376 

Atlantic continues to warm (Murakami et al., 2018). These trends may enhance long-distance 377 

dispersal of mangrove propagules and facilitate poleward range expansion (Van der Stocken, 378 

Carroll, Menemenlis, Simard, & Koedam, 2019; Van der Stocken, Wee, et al., 2019). After 379 

Hurricane Irma, we documented large numbers of A. germinans drift propagules along Atlantic 380 

Florida beaches at, and past, the present-day range margin of this species. Provision of 381 
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propagules to these areas, where we found limited or no propagules in 2014 (a non-hurricane 382 

year), suggests that hurricanes function as episodic events that are necessary for these estuarine 383 

mangroves to expand poleward. Consistent with this conclusion, expansion patterns of invasive 384 

species within this region have been linked to hurricane frequency (Bhattarai & Cronin, 2014; 385 

Johnston & Purkis, 2015). However, we only document one non-hurricane (2014) and one 386 

hurricane (2017) year and, due to the timing of Hurricane Irma, our beach surveys were 387 

approximately 2.5 weeks later in 2017. Annual and seasonal differences in propagule production 388 

and release could account for some of the variation in drift-propagule densities between our two 389 

sampling periods, although only a relatively slight increase in drift-propagule density at the 390 

lower-latitude comparison site in 2017 compared to 2014 suggests that these differences may not 391 

have had a substantial impact. Instead, A. germinans propagules are generally retained within 392 

estuaries (Sousa et al., 2007), as are those of a congener (A. marina) (Clarke, 1993; Van der 393 

Stocken, Vanschoenwinkel, De Ryck, & Koedam, 2018), which would explain why we observed 394 

comparatively limited numbers of beach-stranded propagules (and no propagules past the 395 

present-day range margin) under non-storm conditions. Extreme high-water events, associated 396 

with storm surge, are also needed to disperse mangrove propagules over dense salt-marsh 397 

vegetation to enable expansion inland (Peterson & Bell, 2012; Rodriguez, Feller, & Cavanaugh, 398 

2016). Therefore, for mangrove range expansion to occur, the pulse of energy and unusually 399 

high-water levels provided by hurricanes seem to be the prerequisite needed to flush propagules 400 

out of estuaries in large numbers and into more poleward, salt-marsh-dominated areas. 401 

We observed highest drift-propagule densities at the lower-latitude comparison site during a 402 

non-hurricane year. As Florida mangroves decline in abundance with latitude (Osland et al., 403 

2017), the number of propagules dispersed out of estuaries may generally be dictated by 404 
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neighbouring mangrove abundance (i.e., larger forests produce greater numbers of propagules), 405 

consistent with previous mangrove dispersal studies (Sengupta et al., 2005; Van der Stocken et 406 

al., 2018). In contrast, following Hurricane Irma, much higher drift-propagule densities were 407 

observed at the range margin, where far fewer mangroves exist. This difference suggests that 408 

dispersal patterns can vary depending on the unique attributes of each storm. Hurricane Irma 409 

produced greater storm surge along northeast Florida compared to areas directly south 410 

(Cangialosi et al., 2018), which may explain why greater numbers of drift propagules were 411 

deposited on beaches at the range margin compared to the lower-latitude comparison site. 412 

Numbers of drift propagules and dispersal direction may be influenced by variation in hurricane 413 

trajectory and intensity (Krauss & Osland, 2020), as well as ocean circulation patterns (Kennedy 414 

et al., 2017) and latitudinal variation in the timing of propagule release (Van der Stocken, López-415 

Portillo, & Koedam, 2017). Continued monitoring along expected hurricane pathways is needed 416 

to better quantify the influence of these factors and to better predict dispersal patterns associated 417 

with future storm events. 418 

 419 

Expanding genotypes are from the nearest sources 420 

Where do hurricane-dispersed propagules come from? Extreme storm events have the potential 421 

to drive trans-oceanic dispersal (Carlton et al., 2017; Waters, King, Fraser, & Craw, 2018); 422 

however, we found that the vast majority of drift propagules collected after Hurricane Irma came 423 

from the nearest sources. Hence, hurricanes may provide an expanding gene pool that consists of 424 

a much-reduced representation of genetic variation within a species, although even limited long-425 

distance dispersal (as observed here) can lead to substantial increases in genetic variation 426 

(Bialozyt, Ziegenhagen, & Petit, 2006). Migration models for terrestrial tree species find a 427 
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similar pattern, with colonisation past present-day distributions mostly influenced by the species’ 428 

abundance at the range limit (Iverson et al., 2004). Yet, while forecast migration of these 429 

terrestrial trees for the next 100 years is mostly restricted to 10-20 km (Iverson et al., 2004; 430 

Prasad et al., 2013), we found dispersal to beaches >100 km from range-margin sources after a 431 

single storm event and vagrant trees 80 km from their assigned source. This contrast is consistent 432 

with longer transport potential for coastal species (Nathan et al., 2008) and highlights that coastal 433 

range expansions have the potential to occur rapidly over large spatial scales. 434 

A leptokurtic dispersal kernel, where most dispersal occurs over short distances, is 435 

consistent with genetic analyses across mangrove species (Van der Stocken, Wee, et al., 2019 436 

and citations within). Local sources are also thought to provide propagules for mangrove forest 437 

regeneration after storms (Krauss & Osland, 2020). This pattern is consistent with restricted gene 438 

flow in taxa from spatially-discrete estuarine habitats (Bilton, Paula, & Bishop, 2002). 439 

Remarkably, the proportions of unambiguous assignments from our eight survey sites at or past 440 

the A. germinans range margin (89% from range margin, 9% from nearest range core, 2% longer 441 

distances) were similar to the proportions of propagules from a congener (A. marina) collected 442 

within different zones of an East African estuary (83% adjacent to forest, 16% near estuary exit, 443 

<1% outside estuary; Van der Stocken et al., 2018). Dispersal patterns of propagules from 444 

Avicennia species may not change substantially whether within tidal estuaries or following 445 

extreme storm events (i.e., most propagules remain closest to their source, very few travel longer 446 

distances); however, we found that storms create a transient shift in the dispersal kernel towards 447 

massively greater spatial scales (from metres to kilometres). Further genetic research that 448 

determines the origins of drift propagules found during non-storm periods will be needed to 449 

better quantify the effect of these storms on dispersal distances. 450 



21 
 

Although most dispersal was sourced to the nearest populations, we did find a greater 451 

proportion of dispersal from more distant sources at the most southern range-margin survey site 452 

and at the lower-latitude comparison site (maximum over-water distance: 1,135 km, 870 km, 453 

respectively). Euclidean distances were considerably shorter (maximum distance: 457 km, 327 454 

km, respectively), but may be overly conservative as propagules would need to be dispersed 455 

overland by wind from the Gulf (West) coast to the Atlantic (East) coast of Florida. Of the nine 456 

survey sites in this study, these two sites with greater proportions of long-distance dispersal are 457 

the most geographically proximate to larger mangrove forests south of the range margin. Greater 458 

geographical isolation from these lower-latitude forests may explain the lack of dispersal over 459 

longer distances to the more northern survey sites. In addition, our observations may reflect a 460 

density-dependent process, where an overwhelming number of local propagules further dilutes 461 

the already small proportion of propagules from more-distant sources (Waters, Fraser, & Hewitt, 462 

2013). This possibility may explain why we observed numerous unambiguous assignments to the 463 

adjacent range-margin source, but almost no evidence of longer-distance dispersal, at the survey 464 

site (code: MB) that borders the most southern range-margin survey site. 465 

Almost all of the collected drift propagules were viable, but beach-stranded propagules are 466 

not analogous to effective dispersal (Auffret et al., 2017). Our documentation of vagrant A. 467 

germinans trees provides evidence of previous successful establishment beyond the most 468 

northern established population, and these trees were exclusively sourced to range-margin (or 469 

possibly the nearest range core) populations. Effective dispersal only from the nearest potential 470 

sources may simply be the result of the much greater local supply of propagules from these 471 

sources, or could indicate that post-dispersal establishment applies a filter to the pool of available 472 

drift propagules based on shorter flotation times for range-margin propagules (Alleman & 473 
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Hester, 2011b; Simpson et al., 2017) or on local adaptation to environmental conditions (Cruz et 474 

al., 2019). 475 

Intraspecific variation is an important consideration when formulating conservation 476 

strategies and adaptation planning with climate change (Benoliel Carvalho, Torres, Tarroso, & 477 

Velo-Antón, 2019; Chakraborty, Schueler, Lexer, & Wang, 2019). Our findings suggest that 478 

hurricanes may be a prerequisite for poleward range expansion of a coastal tree species and that 479 

these storm events can shape the expanding gene pool by providing new recruits almost 480 

exclusively from range-margin sources. Expansion of range-margin genotypes, that are 481 

presumably better adapted to climatic extremes experienced beyond the current distribution, may 482 

facilitate species range expansion with climate change (Rehm, Olivas, Stroud, & Feeley, 2015). 483 

Limited immigration from range-core sources may also expedite adaptation to these marginal 484 

environments (Kawecki, 2008). However, range margins may already exhibit reduced genetic 485 

variation compared to more central portions of a distributional range (Pironon et al., 2017). 486 

Considerable reductions in genetic variation are documented in these Atlantic Florida range-487 

margin A. germinans compared to conspecifics farther south (Kennedy, Preziosi, et al., 2020b). 488 

Further reductions in genetic variation due to founder effects and minimal gene flow from more 489 

diverse sources could constrain evolutionary responses and reduce fitness in these expanding 490 

populations (Nadeau & Urban, 2019 and citations within). For instance, less genetically-diverse 491 

mangrove species were less resilient to extended flooding, analogous to forecast impacts of sea 492 

level rise (Z. Guo et al., 2018). Yet, we found that vagrant A. germinans trees were not simply 493 

surviving past this species’ range limit, but instead, appear to be thriving. Vagrant trees were as 494 

potentially reproductive as range-margin conspecifics and we found genetic evidence that two 495 

individuals had successfully reproduced, consistent with evidence of precocious reproduction 496 
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(Dangremond & Feller, 2016) and greater reproductive success (Goldberg & Heine, 2017) in a 497 

co-occurring range-margin mangrove, Rhizophora mangle. Range-margin A. germinans also 498 

exhibit shifts towards more cold-tolerant leaf traits (Cook-Patton, Lehmann, & Parker, 2015; 499 

Kennedy, Preziosi, et al., 2020b) and their seedlings can survive climatic conditions well past 500 

their present-day range limit (Hayes et al., 2020). Further work is needed to understand how 501 

intraspecific variation at, and past, this expanding range margin may shape population-level 502 

responses to future climate change (e.g., Cruz et al., 2020, 2019). 503 

 504 

Insights for modelling range shifts 505 

Plant dispersal and migration patterns are one of the most significant uncertainties for forecasting 506 

future distributional shifts with climate change (Thuiller et al., 2008 and citations within). 507 

Modelling efforts are further complicated as migration rates are not constant over time because 508 

of the transient nature of dispersal and colonisation (Zeigler & Fagan, 2014). Research that 509 

identifies mechanisms that overcome migration constraints and lead to episodic range shifts will 510 

enhance our understanding of why many species lag behind climate-change projections and will 511 

advance efforts to forecast future range shifts (Renwick & Rocca, 2015). 512 

Mangrove distributional limits are controlled by climatic thresholds in minimum temperature 513 

and/or precipitation (Cavanaugh et al., 2018; Osland et al., 2017). Forecast warming trends 514 

indicate that Atlantic Florida mangroves at their present-day range margin will rarely be 515 

constrained by periodic freeze events into the future, and as a result will permanently replace 516 

neighbouring salt-marsh vegetation (Cavanaugh et al., 2019, 2015). Based on these climate 517 

projections, the distribution of A. germinans is forecast to expand northward ~160 km over the 518 

next 50 years (3.2 km per year; Cavanaugh et al., 2015). However, as highlighted by Cavanaugh 519 
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et al. (2015), release from this climatic constraint alone does not guarantee range expansion if 520 

not accompanied by propagule dispersal and an availability of suitable habitat. Here, we found 521 

that A. germinans poleward expansion is likely dispersal limited under ‘normal’ conditions, and 522 

that episodic extreme storm events are needed to move propagules past the contemporary range 523 

limit. In line with this conclusion, the present-day Atlantic Florida mangrove range margin is 524 

experiencing rapid range infilling (Simpson, Stein, Osborne, & Feller, 2019), but our coastal 525 

surveys indicate very little in terms of poleward expansion. Therefore, Atlantic Florida mangrove 526 

expansion will presumably not be a progressive march poleward, and instead, this process will 527 

likely occur via a series of starts and stops driven by propagule dispersal out of estuaries and 528 

over longer distances following extreme storm events. 529 

Incorporating biological mechanisms into predictive models should improve our ability to 530 

forecast changes in biodiversity with climate change (Urban et al., 2016). Mechanistic models 531 

can provide more realistic predictions and possibly greater transferability across geographic 532 

regions, although many uncertainties and shortcomings still remain (Yates et al., 2018). 533 

Cavanaugh et al. (2015) took the first step in this direction with their incorporation of a 534 

mechanistic predictor (i.e., freeze degree days) to forecast mangrove range expansion along 535 

Atlantic Florida, with a fully-mechanistic model of mangrove distributions as a possible next 536 

step. Our research suggests that, in addition to physiological thresholds, including hurricane 537 

projections (e.g., storm frequencies, trajectories, intensities) is essential for more realistic 538 

forecasts of Atlantic Florida mangrove expansion, as poleward dispersal will likely be restricted 539 

to these transient windows. We also provide empirical estimates of hurricane-driven dispersal 540 

distances (measured as both over-water distance and Euclidean distance, the most conservative 541 

estimate possible) that are needed to parameterise these models (Van der Stocken, Carroll, et al., 542 
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2019). Further work is necessary to understand how expansion from a restricted set of sources 543 

may shape adaptive capacity in newly-colonised populations, which can also be incorporated 544 

into future models (Bush et al., 2016). However, physiological thresholds and dispersal are not 545 

the only constraints to mangrove expansion. Smaller-scale, niche-related constraints also 546 

influence mangrove establishment, survival, and growth (Krauss et al., 2008), including 547 

hydroperiod and salinity (Alleman & Hester, 2011a; Coldren & Proffitt, 2017), salt-marsh 548 

interactions (E. Chen, Blaze, Smith, Peng, & Byers, 2020; H. Guo, Zhang, Lan, & Pennings, 549 

2013; Pickens, Sloey, & Hester, 2019; Simpson, Feller, & Chapman, 2013), predation or 550 

herbivory (Devaney, Lehmann, Feller, & Parker, 2017; Langston, Kaplan, & Angelini, 2017), 551 

and nutrient availability (Dangremond, Simpson, Osborne, & Feller, 2019). In closing, multiple 552 

interacting factors, at both large and small spatial scales, will influence mangrove range 553 

expansion (Rogers & Krauss, 2018) and need to be considered to better anticipate future changes 554 

in these coastal ecosystems with climate change. 555 

 556 

ACKNOWLEDGEMENTS 557 

This research was funded by a NASA Climate and Biological Response grant # NX11AO94G 558 

and an NSF MacroSystems Biology Program grant # EF1065821 to ICF, an NSF Postdoctoral 559 

Fellowship in Biology award #1308565 to EMD, and a Manchester Metropolitan University 560 

studentship to JPK. Many thanks to R Bardou, G Canas, K Cavanaugh, R Feller, E Geoghegan, 561 

C Hyde, S Reed, and L Simpson for field assistance, and to the University of Manchester 562 

Genomic Technologies Core Facility and F Combe for fragment analysis. Additional thanks to 563 

two anonymous reviewers and the editor for insightful comments on an earlier version of the 564 



26 
 

manuscript. As always, thank you to A Jara Cavieres, C Kennedy, and M Kennedy for 565 

unconditional support and big smiles. 566 

 567 

REFERENCES 568 

Alexander, J. M., Chalmandrier, L., Lenoir, J., Burgess, T. I., Essl, F., Haider, S., … Pellissier, 569 
L. (2018). Lags in the response of mountain plant communities to climate change. Global 570 
Change Biology, 24(2), 563–579. doi: 10.1111/gcb.13976 571 

Alleman, L. K., & Hester, M. W. (2011a). Refinement of the fundamental niche of black 572 
mangrove (Avicennia germinans) seedlings in Louisiana: Applications for restoration. 573 
Wetlands Ecology and Management, 19, 47–60. doi: 10.1007/s11273-010-9199-6 574 

Alleman, L. K., & Hester, M. W. (2011b). Reproductive Ecology of Black Mangrove (Avicennia 575 
germinans) Along the Louisiana Coast: Propagule Production Cycles, Dispersal 576 
Limitations, and Establishment Elevations. Estuaries and Coasts, 34(5), 1068–1077. doi: 577 
10.1007/s12237-011-9404-8 578 

Andraca-Gómez, G., Ordano, M., Boege, K., Domínguez, C. A., Piñero, D., Pérez-Ishiwara, R., 579 
… Fornoni, J. (2015). A potential invasion route of Cactoblastis cactorum within the 580 
Caribbean region matches historical hurricane trajectories. Biological Invasions, 17(5), 581 
1397–1406. doi: 10.1007/s10530-014-0802-2 582 

Auffret, A. G., Rico, Y., Bullock, J. M., Hooftman, D. A. P., Pakeman, R. J., Soons, M. B., … 583 
Cousins, S. A. O. (2017). Plant functional connectivity – integrating landscape structure and 584 
effective dispersal. Journal of Ecology, 105(6), 1648–1656. doi: 10.1111/1365-2745.12742 585 

Benoliel Carvalho, S., Torres, J., Tarroso, P., & Velo-Antón, G. (2019). Genes on the edge: A 586 
framework to detect genetic diversity imperiled by climate change. Global Change Biology, 587 
25(12), 4034–4047. doi: 10.1111/gcb.14740 588 

Bertrand, R., Lenoir, J., Piedallu, C., Dillon, G. R., De Ruffray, P., Vidal, C., … Gégout, J. C. 589 
(2011). Changes in plant community composition lag behind climate warming in lowland 590 
forests. Nature, 479(7374), 517–520. doi: 10.1038/nature10548 591 

Bhattarai, G. P., & Cronin, J. T. (2014). Hurricane activity and the large-scale pattern of spread 592 
of an invasive plant species. PLoS ONE, 9(5), e98478. doi: 10.1371/journal.pone.0098478 593 

Bialozyt, R., Ziegenhagen, B., & Petit, R. J. (2006). Contrasting effects of long distance seed 594 
dispersal on genetic diversity during range expansion. Journal of Evolutionary Biology, 19, 595 
12–20. doi: 10.1111/j.1420-9101.2005.00995.x 596 

Bilton, D. T., Paula, J., & Bishop, J. D. D. (2002). Dispersal, genetic differentiation and 597 
speciation in estuarine organisms. Estuarine, Coastal and Shelf Science, 55(6), 937–952. 598 
doi: 10.1006/ecss.2002.1037 599 

Boisvert-Marsh, L., Périé, C., & de Blois, S. (2019). Divergent responses to climate change and 600 
disturbance drive recruitment patterns underlying latitudinal shifts of tree species. Journal 601 
of Ecology, 107(4), 1956–1969. doi: 10.1111/1365-2745.13149 602 

Bonan, G. B. (2008). Forests and climate change: Forcings, feedbacks, and the climate benefits 603 
of forests. Science, 320(5882), 1444–1449. doi: 10.1126/science.1155121 604 

Bonin, A., Bellemain, E., Eidesen, P. B., Pompanon, F., Brochmann, C., & Taberlet, P. (2004). 605 
How to track and assess genotyping errors in population genetics studies. Molecular 606 



27 
 

Ecology, 13(11), 3261–3273. doi: 10.1111/j.1365-294X.2004.02346.x 607 
Branoff, B. L. (2019). Mangrove Disturbance and Response Following the 2017 Hurricane 608 

Season in Puerto Rico. Estuaries and Coasts. doi: 10.1007/s12237-019-00585-3 609 
Bush, A., Mokany, K., Catullo, R., Hoffmann, A., Kellermann, V., Sgrò, C., … Ferrier, S. 610 

(2016). Incorporating evolutionary adaptation in species distribution modelling reduces 611 
projected vulnerability to climate change. Ecology Letters, 19(12), 1468–1478. doi: 612 
10.1111/ele.12696 613 

Cangialosi, J. P., Latto, A. S., & Berg, R. (2018). National Hurricane Center Tropical Cyclone 614 
Report. Hurricane Irma (AL112017) 30 August - 12 September 2017. Retrieved June 4, 615 
2018, from National Hurricane Center website: 616 
https://www.nhc.noaa.gov/data/tcr/AL112017_Irma.pdf 617 

Carlton, J. T., Chapman, J. W., Geller, J. B., Miller, J. A., Carlton, D. A., McCuller, M. I., … 618 
Ruiz, G. M. (2017). Tsunami-driven rafting: Transoceanic species dispersal and 619 
implications for marine biogeography. Science, 357(6358), 1402–1406. doi: 620 
10.1126/science.aao1498 621 

Cavanaugh, K. C., Dangremond, E. M., Doughty, C. L., Williams, A. P., Parker, J. D., Hayes, M. 622 
A., … Feller, I. C. (2019). Climate-driven regime shifts in a mangrove–salt marsh ecotone 623 
over the past 250 years. Proceedings of the National Academy of Sciences, 116(43), 21602–624 
21608. doi: 10.1073/pnas.1902181116 625 

Cavanaugh, K. C., Kellner, J. R., Forde, A. J., Gruner, D. S., Parker, J. D., Rodriguez, W., & 626 
Feller, I. C. (2014). Poleward expansion of mangroves is a threshold response to decreased 627 
frequency of extreme cold events. Proceedings of the National Academy of Sciences, 628 
111(2), 723–727. doi: 10.1073/pnas.1315800111 629 

Cavanaugh, K. C., Osland, M. J., Bardou, R., Hinojosa-Arango, G., López-Vivas, J. M., Parker, 630 
J. D., & Rovai, A. S. (2018). Sensitivity of mangrove range limits to climate variability. 631 
Global Ecology and Biogeography, 27(8), 925–935. doi: 10.1111/geb.12751 632 

Cavanaugh, K. C., Parker, J. D., Cook-Patton, S. C., Feller, I. C., Williams, A. P., & Kellner, J. 633 
R. (2015). Integrating physiological threshold experiments with climate modeling to project 634 
mangrove species’ range expansion. Global Change Biology, 21(5), 1928–1938. doi: 635 
10.1111/gcb.12843 636 

Cerón-Souza, I., Bermingham, E., McMillan, W. O., & Jones, F. A. (2012). Comparative genetic 637 
structure of two mangrove species in Caribbean and Pacific estuaries of Panama. BMC 638 
Evolutionary Biology, 12, 205. doi: 10.1186/1471-2148-12-205 639 

Cerón-Souza, I., Gonzalez, E. G., Schwarzbach, A. E., Salas-Leiva, D. E., Rivera-Ocasio, E., 640 
Toro-Perea, N., … McMillan, W. O. (2015). Contrasting demographic history and gene 641 
flow patterns of two mangrove species on either side of the Central American Isthmus. 642 
Ecology and Evolution, 5(16), 3486–3499. doi: 10.1002/ece3.1569 643 

Cerón-Souza, I., Rivera-Ocasio, E., Funk, S. M., & McMillan, W. O. (2006). Development of six 644 
microsatellite loci for black mangrove (Avicennia germinans). Molecular Ecology Notes, 645 
6(3), 692–694. doi: 10.1111/j.1471-8286.2006.01312.x 646 

Chakraborty, D., Schueler, S., Lexer, M. J., & Wang, T. (2019). Genetic trials improve the 647 
transfer of Douglas-fir distribution models across continents. Ecography, 42, 88–101. doi: 648 
10.1111/ecog.03888 649 

Chen, E., Blaze, J. A., Smith, R. S., Peng, S., & Byers, J. E. (2020). Freeze‐tolerance of 650 
poleward‐spreading mangrove species weakened by soil properties of resident salt marsh 651 
competitor. Journal of Ecology. doi: 10.1111/1365-2745.13350 652 



28 
 

Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B., & Thomas, C. D. (2011). Rapid Range Shifts 653 
of Species Associated with High Levels of Climate Warming. Science, 333(6045), 1024–654 
1026. doi: 10.1126/science.1206432 655 

Clarke, P. J. (1993). Dispersal of grey mangrove (Avicennia marina) propagules in southeastern 656 
Australia. Aquatic Botany, 45, 195–204. doi: 10.1016/0304-3770(93)90021-N 657 

Coldren, G. A., & Proffitt, C. E. (2017). Mangrove seedling freeze tolerance depends on salt 658 
marsh presence, species, salinity, and age. Hydrobiologia, 803, 159–171. doi: 659 
10.1007/s10750-017-3175-6 660 

Cook-Patton, S. C., Lehmann, M., & Parker, J. D. (2015). Convergence of three mangrove 661 
species towards freeze-tolerant phenotypes at an expanding range edge. Functional 662 
Ecology, 29(10), 1332–1340. doi: 10.1111/1365-2435.12443 663 

Corlett, R. T., & Westcott, D. A. (2013). Will plant movements keep up with climate change? 664 
Trends in Ecology and Evolution, 28(8), 482–488. doi: 10.1016/j.tree.2013.04.003 665 

Cornuet, J. M., Piry, S., Luikart, G., Estoup, A., & Solignac, M. (1999). New methods 666 
employing multilocus genotypes to select or exclude populations as origins of individuals. 667 
Genetics, 153(4), 1989–2000. 668 

Covarrubias-Pazaran, G., Diaz-Garcia, L., Schlautman, B., Salazar, W., & Zalapa, J. (2016). 669 
Fragman: an R package for fragment analysis. BMC Genetics, 17(62), 1–8. doi: 670 
10.1186/s12863-016-0365-6 671 

Cruz, M. V., Mori, G. M., Oh, D. H., Dassanayake, M., Zucchi, M. I., Oliveira, R. S., & Souza, 672 
A. P. de. (2020). Molecular responses to freshwater limitation in the mangrove tree 673 
Avicennia germinans (Acanthaceae). Molecular Ecology, 29(2), 344–362. doi: 674 
10.1111/mec.15330 675 

Cruz, M. V., Mori, G. M., Signori-Müller, C., da Silva, C. C., Oh, D. H., Dassanayake, M., … de 676 
Souza, A. P. (2019). Local adaptation of a dominant coastal tree to freshwater availability 677 
and solar radiation suggested by genomic and ecophysiological approaches. Scientific 678 
Reports, 9, 19936. doi: 10.1038/s41598-019-56469-w 679 

Dangremond, E. M., & Feller, I. C. (2016). Precocious reproduction increases at the leading edge 680 
of a mangrove range expansion. Ecology and Evolution, 6(14), 5087–5092. doi: 681 
10.1002/ece3.2270 682 

Dangremond, E. M., Simpson, L. T., Osborne, T. Z., & Feller, I. C. (2019). Nitrogen Enrichment 683 
Accelerates Mangrove Range Expansion in the Temperate–Tropical Ecotone. Ecosystems. 684 
doi: 10.1007/s10021-019-00441-2 685 

Devaney, J. L., Lehmann, M., Feller, I. C., & Parker, J. D. (2017). Mangrove microclimates alter 686 
seedling dynamics at the range edge. Ecology, 98(10), 2513–2520. doi: 10.1002/ecy.1979 687 

Giri, C., Ochieng, E., Tieszen, L. L., Zhu, Z., Singh, A., Loveland, T., … Duke, N. (2011). 688 
Status and distribution of mangrove forests of the world using earth observation satellite 689 
data. Global Ecology and Biogeography, 20, 154–159. doi: 10.1111/j.1466-690 
8238.2010.00584.x 691 

Goldberg, N. A., & Heine, J. N. (2017). Life on the leading edge: Phenology and demography of 692 
the red mangrove Rhizophora mangle L. at the northern limit of its expanding range. Flora, 693 
235, 76–82. doi: 10.1016/j.flora.2017.09.003 694 

Gray, L. K., & Hamann, A. (2013). Tracking suitable habitat for tree populations under climate 695 
change in western North America. Climatic Change, 117, 289–303. doi: 10.1007/s10584-696 
012-0548-8 697 

Guo, H., Zhang, Y., Lan, Z., & Pennings, S. C. (2013). Biotic interactions mediate the expansion 698 



29 
 

of black mangrove (Avicennia germinans) into salt marshes under climate change. Global 699 
Change Biology, 19(9), 2765–2774. doi: 10.1111/gcb.12221 700 

Guo, Z., Li, X., He, Z., Yang, Y., Wang, W., Zhong, C., … Shi, S. (2018). Extremely low 701 
genetic diversity across mangrove taxa reflects past sea level changes and hints at poor 702 
future responses. Global Change Biology, 24(4), 1741–1748. doi: 10.1111/gcb.13968 703 

Hayes, M. A., Shor, A. C., Jess, A., Miller, C., Kennedy, J. P., & Feller, I. C. (2020). The role of 704 
glycine betaine in range expansions; protecting mangroves against extreme freeze events. 705 
Journal of Ecology, 108(1), 61–69. doi: 10.1111/1365-2745.13243 706 

Hickling, R., Roy, D. B., Hill, J. K., Fox, R., & Thomas, C. D. (2006). The distributions of a 707 
wide range of taxonomic groups are expanding polewards. Global Change Biology, 12(3), 708 
450–455. doi: 10.1111/j.1365-2486.2006.01116.x 709 

Hijmans, R. J., Williams, E., & Vennes, C. (2019). geosphere: Spherical Trigonometry. R 710 
package version 1.5-10. Retrieved from http://cran.r-project.org/package=geosphere 711 

Hothorn, T., Hornik, K., van de Wiel, M., & Zeileis, A. (2008). Implementing a class of 712 
permutation tests: The coin package. Journal of Statistical Software, 28(8), 1–23. doi: 713 
10.18637/jss.v028.i08 714 

Iverson, L. R., Schwartz, M. W., & Prasad, A. M. (2004). How fast and far might tree species 715 
migrate in the eastern United States due to climate change? Global Ecology and 716 
Biogeography, 13(3), 209–219. doi: 10.1111/j.1466-822X.2004.00093.x 717 

Johnston, M. W., & Purkis, S. J. (2015). Hurricanes accelerated the Florida-Bahamas lionfish 718 
invasion. Global Change Biology, 21(6), 2249–2260. doi: 10.1111/gcb.12874 719 

Kangas, P. C., & Lugo, A. E. (1990). The distribution of mangroves and saltmarsh in Florida. 720 
Tropical Ecology, 31(1), 32–39. 721 

Kawecki, T. J. (2008). Adaptation to Marginal Habitats. Annual Review of Ecology, Evolution, 722 
and Systematics, 39, 321–342. doi: 10.1146/annurev.ecolsys.38.091206.095622 723 

Kendall, M. S., Battista, T., & Hillis-Starr, Z. (2004). Long term expansion of a deep 724 
Syringodium filiforme meadow in St. Croix, US Virgin Islands: The potential role of 725 
hurricanes in the dispersal of seeds. Aquatic Botany, 78, 15–25. doi: 726 
10.1016/j.aquabot.2003.09.004 727 

Kennedy, J. P., Dangremond, E. M., Hayes, M. A., Preziosi, R. F., Rowntree, J. K., & Feller, I. 728 
C. (2020). Data from: Hurricanes overcome migration lag and shape intraspecific genetic 729 
variation beyond a poleward mangrove range limit. Dryad Digital Repository. doi: 730 
10.5061/dryad.2280gb5pd 731 

Kennedy, J. P., Garavelli, L., Truelove, N. K., Devlin, D. J., Box, S. J., Chérubin, L. M., & 732 
Feller, I. C. (2017). Contrasting genetic effects of red mangrove (Rhizophora mangle L.) 733 
range expansion along West and East Florida. Journal of Biogeography, 44, 335–347. doi: 734 
10.1111/jbi.12813 735 

Kennedy, J. P., Preziosi, R. F., Rowntree, J. K., & Feller, I. C. (2020a). Data from: Is the central-736 
marginal hypothesis a general rule? Evidence from three distributions of an expanding 737 
mangrove species, Avicennia germinans (L.) L. Dryad Digital Repository. doi: 738 
10.5061/dryad.69p8cz8xh 739 

Kennedy, J. P., Preziosi, R. F., Rowntree, J. K., & Feller, I. C. (2020b). Is the central-marginal 740 
hypothesis a general rule? Evidence from three distributions of an expanding mangrove 741 
species, Avicennia germinans (L.) L. Molecular Ecology, 29(4), 704–719. doi: 742 
10.1111/mec.15365 743 

Kennedy, J. P., Sammy, J. M., Rowntree, J. K., & Preziosi, R. F. (2020). Mating system variation 744 



30 
 

in neotropical black mangrove, Avicennia germinans, at three spatial scales towards an 745 
expanding northern distributional limit. Estuarine, Coastal and Shelf Science, 106754. doi: 746 
10.1016/j.ecss.2020.106754 747 

Krauss, K. W., Lovelock, C. E., McKee, K. L., López-Hoffman, L., Ewe, S. M. L., & Sousa, W. 748 
P. (2008). Environmental drivers in mangrove establishment and early development: A 749 
review. Aquatic Botany, 89(2), 105–127. doi: 10.1016/j.aquabot.2007.12.014 750 

Krauss, K. W., & Osland, M. J. (2020). Tropical cyclones and the organization of mangrove 751 
forests: a review. Annals of Botany, 125(2), 213–234. doi: 10.1093/aob/mcz161 752 

Langston, A. K., Kaplan, D. A., & Angelini, C. (2017). Predation restricts black mangrove 753 
(Avicennia germinans) colonization at its northern range limit along Florida’s Gulf Coast. 754 
Hydrobiologia, 803, 317–331. doi: 10.1007/s10750-017-3197-0 755 

Lee, S. Y., Primavera, J. H., Dahdouh-Guebas, F., McKee, K., Bosire, J. O., Cannicci, S., … 756 
Record, S. (2014). Ecological role and services of tropical mangrove ecosystems: A 757 
reassessment. Global Ecology and Biogeography, 23(7), 726–743. doi: 10.1111/geb.12155 758 

Lembrechts, J. J., Pauchard, A., Lenoir, J., Nuñez, M. A., Geron, C., Ven, A., … Milbau, A. 759 
(2016). Disturbance is the key to plant invasions in cold environments. Proceedings of the 760 
National Academy of Sciences of the United States of America, 113(49), 14061–14066. doi: 761 
10.1073/pnas.1608980113 762 

Lenoir, J., & Svenning, J. C. (2015). Climate-related range shifts - a global multidimensional 763 
synthesis and new research directions. Ecography, 38, 15–28. doi: 10.1111/ecog.00967 764 

Liang, Y., Duveneck, M. J., Gustafson, E. J., Serra-Diaz, J. M., & Thompson, J. R. (2018). How 765 
disturbance, competition, and dispersal interact to prevent tree range boundaries from 766 
keeping pace with climate change. Global Change Biology, 24, e335–e351. doi: 767 
10.1111/gcb.13847 768 

Lonard, R. I., Judd, F. W., Summy, K., DeYoe, H., & Stalter, R. (2017). The Biological Flora of 769 
Coastal Dunes and Wetlands: Avicennia germinans (L.) L. Journal of Coastal Research, 770 
33(1), 191–207. doi: 10.2112/07-0933.1 771 

Lugo, A. E. (2008). Visible and invisible effects of hurricanes on forest ecosystems: An 772 
international review. Austral Ecology, 33(4), 368–398. doi: 10.1111/j.1442-773 
9993.2008.01894.x 774 

Mori, G. M., Zucchi, M. I., Sampaio, I., & Souza, A. P. (2010). Microsatellites for the mangrove 775 
tree Avicennia germinans (Acanthaceae): Tools for hybridization and mating system 776 
studies. American Journal of Botany, 97(9), 79–81. doi: 10.3732/ajb.1000219 777 

Mori, G. M., Zucchi, M. I., Sampaio, I., & Souza, A. P. (2015). Species distribution and 778 
introgressive hybridization of two Avicennia species from the Western Hemisphere 779 
unveiled by phylogeographic patterns Phylogenetics and phylogeography. BMC 780 
Evolutionary Biology, 15, 61. doi: 10.1186/s12862-015-0343-z 781 

Murakami, H., Levin, E., Delworth, T. L., Gudgel, R., & Hsu, P. C. (2018). Dominant effect of 782 
relative tropical Atlantic warming on major hurricane occurrence. Science, 362(6416), 794–783 
799. doi: 10.1126/science.aat6711 784 

Nadeau, C. P., & Urban, M. C. (2019). Eco-evolution on the edge during climate change. 785 
Ecography, 42(7), 1280–1297. doi: 10.1111/ecog.04404 786 

Nathan, R., Schurr, F. M., Spiegel, O., Steinitz, O., Trakhtenbrot, A., & Tsoar, A. (2008). 787 
Mechanisms of long-distance seed dispersal. Trends in Ecology and Evolution, 23(11), 638–788 
647. doi: 10.1016/j.tree.2008.08.003 789 

Nettel, A., & Dodd, R. S. (2007). Drifting propagules and receding swamps: Genetic footprints 790 



31 
 

of mangrove recolonization and dispersal along tropical coasts. Evolution, 61(4), 958–971. 791 
doi: 10.1111/j.1558-5646.2007.00070.x 792 

Nettel, A., Rafii, F., & Dodd, R. S. (2005). Characterization of microsatellite markers for the 793 
mangrove tree Avicennia germinans L. (Avicenniaceae). Molecular Ecology Notes, 5, 103–794 
105. doi: 10.1111/j.1471-8286.2004.00851.x 795 

NOAA. (2017). National Hurricane Center GIS Archive - Tropical Cyclone Best Track for 796 
AL112017. Retrieved February 7, 2020, from National Oceanic and Atmospheric 797 
Administration website: 798 
https://www.nhc.noaa.gov/gis/archive_besttrack_%0Aresults.php?id=al11&year=2017&na799 
me=Hurricane 800 

Osland, M. J., Feher, L. C., Anderson, G. H., Vervaeke, W. C., Krauss, K. W., Whelan, K. R. T., 801 
… Cahoon, D. R. (2020). A Tropical Cyclone-Induced Ecological Regime Shift: Mangrove 802 
Forest Conversion to Mudflat in Everglades National Park (Florida, USA). Wetlands. doi: 803 
10.1007/s13157-020-01291-8 WETLANDS 804 

Osland, M. J., Feher, L. C., Griffith, K. T., Cavanaugh, K. C., Enwright, N. M., Day, R. H., … 805 
Rogers, K. (2017). Climatic controls on the global distribution, abundance, and species 806 
richness of mangrove forests. Ecological Monographs, 87(2), 341–359. doi: 807 
10.1002/ecm.1248 808 

Osland, M. J., Feher, L. C., López-Portillo, J., Day, R. H., Suman, D. O., Guzmán Menéndez, J. 809 
M., & Rivera-Monroy, V. H. (2018). Mangrove forests in a rapidly changing world: Global 810 
change impacts and conservation opportunities along the Gulf of Mexico coast. Estuarine, 811 
Coastal and Shelf Science, 214, 120–140. doi: 10.1016/j.ecss.2018.09.006 812 

Paetkau, D., Slade, R., Burden, M., & Estoup, A. (2004). Genetic assignment methods for the 813 
direct, real‐time estimation of migration rate: a simulation‐based exploration of accuracy 814 
and power. Molecular Ecology, 13, 55–65. doi: 10.1046/j.1365-294X.2004.02008.x 815 

Pecl, G. T., Araújo, M. B., Bell, J. D., Blanchard, J., Bonebrake, T. C., Chen, I. C., … Williams, 816 
S. E. (2017). Biodiversity redistribution under climate change: Impacts on ecosystems and 817 
human well-being. Science, 355, eaai9214. doi: 10.1126/science.aai9214 818 

Peterson, J. M., & Bell, S. S. (2012). Tidal events and salt-marsh structure influence black 819 
mangrove (Avicennia germinans) recruitment across an ecotone. Ecology, 93(7), 1648–820 
1658. doi: 10.1890/11-1430.1 821 

Pickens, C. N., Sloey, T. M., & Hester, M. W. (2019). Influence of salt marsh canopy on black 822 
mangrove (Avicennia germinans) survival and establishment at its northern latitudinal limit. 823 
Hydrobiologia, 826, 195–208. doi: 10.1007/s10750-018-3730-9 824 

Pironon, S., Papuga, G., Villellas, J., Angert, A. L., García, M. B., & Thompson, J. D. (2017). 825 
Geographic variation in genetic and demographic performance: new insights from an old 826 
biogeographical paradigm. Biological Reviews, 92(4), 1877–1909. doi: 10.1111/brv.12313 827 

Piry, S., Alapetite, A., Cornuet, J. M., Paetkau, D., Baudouin, L., & Estoup, A. (2004). 828 
GENECLASS2: A software for genetic assignment and first-generation migrant detection. 829 
Journal of Heredity, 95(6), 536–539. doi: 10.1093/jhered/esh074 830 

Poloczanska, E. S., Brown, C. J., Sydeman, W. J., Kiessling, W., Schoeman, D. S., Moore, P. J., 831 
… Richardson, A. J. (2013). Global imprint of climate change on marine life. Nature 832 
Climate Change, 3(10), 919–925. doi: 10.1038/nclimate1958 833 

Prasad, A. M., Gardiner, J. D., Iverson, L. R., Matthews, S. N., & Peters, M. (2013). Exploring 834 
tree species colonization potentials using a spatially explicit simulation model: Implications 835 
for four oaks under climate change. Global Change Biology, 19(7), 2196–2208. doi: 836 



32 
 

10.1111/gcb.12204 837 
R Core Team. (2013). R: A language and environment for statistical computing. Vienna, Austria. 838 

Website: R-project.org: R Foundation for Statistical Computing. 839 
Rabinowitz, D. (1978). Dispersal properties of mangrove propagules. Biotropica, 10(1), 47–57. 840 

doi: 10.2307/2388105 841 
Radabaugh, K. R., Moyer, R. P., Chappel, A. R., Dontis, E. E., Russo, C. E., Joyse, K. M., … 842 

Khan, N. S. (2019). Mangrove Damage, Delayed Mortality, and Early Recovery Following 843 
Hurricane Irma at Two Landfall Sites in Southwest Florida, USA. Estuaries and Coasts. 844 
doi: 10.1007/s12237-019-00564-8 845 

Rannala, B., & Mountain, J. L. (1997). Detecting immigration by using multilocus genotypes. 846 
Proceedings of the National Academy of Sciences, 94(17), 9197–9201. doi: 847 
10.1073/pnas.94.17.9197 848 

Rehm, E. M., Olivas, P., Stroud, J., & Feeley, K. J. (2015). Losing your edge: Climate change 849 
and the conservation value of range-edge populations. Ecology and Evolution, 5(19), 4315–850 
4326. doi: 10.1002/ece3.1645 851 

Renwick, K. M., & Rocca, M. E. (2015). Temporal context affects the observed rate of climate-852 
driven range shifts in tree species. Global Ecology and Biogeography, 24, 44–51. doi: 853 
10.1111/geb.12240 854 

Rodriguez, W., Feller, I. C., & Cavanaugh, K. C. (2016). Spatio-temporal changes of a 855 
mangrove–saltmarsh ecotone in the northeastern coast of Florida, USA. Global Ecology and 856 
Conservation, 7, 245–261. doi: 10.1016/j.gecco.2016.07.005 857 

Rogers, K., & Krauss, K. W. (2018). Moving from Generalisations to Specificity about 858 
Mangrove –Saltmarsh Dynamics. Wetlands. doi: 10.1007/s13157-018-1067-9 859 

Roques, S., Duchesne, P., & Bernatchez, L. (1999). Potential of microsatellites for individual 860 
assignment: The North Atlantic redfish (genus Sebastes) species complex as a case study. 861 
Molecular Ecology, 8(10), 1703–1717. doi: 10.1046/j.1365-294X.1999.00759.x 862 

Ross, M. S., Ogurcak, D. E., Stoffella, S., Sah, J. P., Hernandez, J., & Willoughby, H. E. (2019). 863 
Hurricanes, Storm Surge, and Pine Forest Decline on a Low Limestone Island. Estuaries 864 
and Coasts. doi: 10.1007/s12237-019-00624-z 865 

Scheffers, B. R., De Meester, L., Bridge, T. C. L., Hoffmann, A. A., Pandolfi, J. M., Corlett, R. 866 
T., … Watson, J. E. M. (2016). The broad footprint of climate change from genes to biomes 867 
to people. Science, 354(6313), aaf7671. doi: 10.1126/science.aaf7671 868 

Schurr, F. M., Spiegel, O., Steinitz, O., Trakhtenbrot, A., Tsoar, A., & Nathan, R. (2018). Long‐869 
distance seed dispersal. Annual Plant Reviews Online, 204–237. doi: 870 
10.1002/9781119312994.apr0413 871 

Sengupta, R., Middleton, B., Yan, C., Zuro, M., & Hartman, H. (2005). Landscape 872 
characteristics of Rhizophora mangle forests and propagule deposition in coastal 873 
environments of Florida (USA). Landscape Ecology, 20, 63–72. doi: 10.1007/s10980-004-874 
0468-8 875 

Simpson, L. T., Feller, I. C., & Chapman, S. K. (2013). Effects of competition and nutrient 876 
enrichemnt on Avicennia germinans in the salt marsh-mangrove ecotone. Aquatic Botany, 877 
104, 55–59. doi: 10.1016/j.aquabot.2012.09.006 878 

Simpson, L. T., Osborne, T. Z., & Feller, I. C. (2017). Establishment and Biomass Allocation of 879 
Black and Red Mangroves: Response to Propagule Flotation Duration and Seedling Light 880 
Availability. Journal of Coastal Research, 335, 1126–1134. doi: 10.2112/JCOASTRES-D-881 
16-00108.1 882 



33 
 

Simpson, L. T., Stein, C. M., Osborne, T. Z., & Feller, I. C. (2019). Mangroves dramatically 883 
increase carbon storage after 3 years of encroachment. Hydrobiologia, 834, 13–26. doi: 884 
10.1007/s10750-019-3905-z 885 

Sinclair, E. A., Ruiz-Montoya, L., Krauss, S. L., Anthony, J. M., Hovey, R. K., Lowe, R. J., & 886 
Kendrick, G. A. (2018). Seeds in motion: Genetic assignment and hydrodynamic models 887 
demonstrate concordant patterns of seagrass dispersal. Molecular Ecology, 27(24), 5019–888 
5034. doi: 10.1111/mec.14939 889 

Solomon, A. M., & Kirilenko, A. P. (1997). Climate change and terrestrial biomass: what if trees 890 
do not migrate? Global Ecology and Biogeography Letters, 6(2), 139–148. doi: 891 
10.2307/2997570 892 

Sousa, W. P., Kennedy, P. G., Mitchell, B. J., & Ordóñez L, B. M. (2007). Supply-side ecology 893 
in mangroves: Do propagule dispersal and seedling establishment explain forest structure? 894 
Ecological Monographs, 77(1), 53–76. doi: 10.1890/05-1935 895 

Spalding, M., Kainuma, M., & Collins, L. (2010). World atlas of mangroves. London, UK: 896 
Earthscan. 897 

Svenning, J. C., & Sandel, B. (2013). Disequilibrium vegetation dynamics under future climate 898 
change. American Journal of Botany, 100(7), 1266–1286. doi: 10.3732/ajb.1200469 899 

Thuiller, W., Albert, C., Araújo, M. B., Berry, P. M., Cabeza, M., Guisan, A., … Zimmermann, 900 
N. E. (2008). Predicting global change impacts on plant species’ distributions: Future 901 
challenges. Perspectives in Plant Ecology, Evolution and Systematics, 9, 137–152. doi: 902 
10.1016/j.ppees.2007.09.004 903 

Urban, M. C., Bocedi, G., Hendry, A. P., Mihoub, J. B., Pe’er, G., Singer, A., … Travis, J. M. J. 904 
(2016). Improving the forecast for biodiversity under climate change. Science, 353(6304), 905 
aad8466. doi: 10.1126/science.aad8466 906 

Van der Stocken, T., Carroll, D., Menemenlis, D., Simard, M., & Koedam, N. (2019). Global-907 
scale dispersal and connectivity in mangroves. Proceedings of the National Academy of 908 
Sciences of the United States of America, 116(3), 915–922. doi: 10.1073/pnas.1812470116 909 

Van der Stocken, T., López-Portillo, J., & Koedam, N. (2017). Seasonal release of propagules in 910 
mangroves – Assessment of current data. Aquatic Botany, 138, 92–99. doi: 911 
10.1016/j.aquabot.2017.02.001 912 

Van der Stocken, T., Vanschoenwinkel, B., De Ryck, D., & Koedam, N. (2018). Caught in 913 
transit: offshore interception of seafaring propagules from seven mangrove species. 914 
Ecosphere, 9(4), e02208. doi: 10.1002/ecs2.2208 915 

Van der Stocken, T., Wee, A. K. S., De Ryck, D. J. R., Vanschoenwinkel, B., Friess, D. A., 916 
Dahdouh-Guebas, F., … Webb, E. L. (2019). A general framework for propagule dispersal 917 
in mangroves. Biological Reviews, 94(4), 1547–1575. doi: 10.1111/brv.12514 918 

Walker, L. R., Lodge, D. J., Brokaw, N. V. L., & Waide, R. B. (1991). An Introduction to 919 
Hurricanes in the Caribbean. Biotropica, 23(4a), 313–316. 920 

Walsh, K. J. E., Mcbride, J. L., Klotzbach, P. J., Balachandran, S., Camargo, S. J., Holland, G., 921 
… Sugi, M. (2016). Tropical cyclones and climate change. Wiley Interdisciplinary Reviews: 922 
Climate Change, 7(1), 65–89. doi: 10.1002/wcc.371 923 

Waples, R. S., & Gaggiotti, O. (2006). What is a population? An empirical evaluation of some 924 
genetic methods for identifying the number of gene pools and their degree of connectivity. 925 
Molecular Ecology, 15(6), 1419–1439. doi: 10.1111/j.1365-294X.2006.02890.x 926 

Waters, J. M., Fraser, C. I., & Hewitt, G. M. (2013). Founder takes all: Density-dependent 927 
processes structure biodiversity. Trends in Ecology and Evolution, 28(2), 78–85. doi: 928 



34 
 

10.1016/j.tree.2012.08.024 929 
Waters, J. M., King, T. M., Fraser, C. I., & Craw, D. (2018). An integrated ecological, genetic 930 

and geological assessment of long-distance dispersal by invertebrates on kelp rafts. 931 
Frontiers of Biogeography, 10(3–4), e40888. doi: 10.21425/F5FBG40888 932 

Wernberg, T., Smale, D. A., Tuya, F., Thomsen, M. S., Langlois, T. J., De Bettignies, T., … 933 
Rousseaux, C. S. (2013). An extreme climatic event alters marine ecosystem structure in a 934 
global biodiversity hotspot. Nature Climate Change, 3, 78–82. doi: 10.1038/nclimate1627 935 

Williams, A. A., Eastman, S. F., Eash-Loucks, W. E., Kimball, M. E., Lehmann, M. L., & 936 
Parker, J. D. (2014). Record Northernmost Endemic Mangroves on the United States 937 
Atlantic Coast with a Note on Latitudinal Migration. Southeastern Naturalist, 13(1), 56–63. 938 
doi: 10.1656/058.013.0104 939 

Yates, K. L., Bouchet, P. J., Caley, M. J., Mengersen, K., Randin, C. F., Parnell, S., … Sequeira, 940 
A. M. M. (2018). Outstanding Challenges in the Transferability of Ecological Models. 941 
Trends in Ecology and Evolution, 33(10), 790–802. doi: 10.1016/j.tree.2018.08.001 942 

Zeigler, S. L., & Fagan, W. F. (2014). Transient windows for connectivity in a changing world. 943 
Movement Ecology, 2, 1. doi: 10.1186/2051-3933-2-1 944 

Zhu, K., Woodall, C. W., & Clark, J. S. (2012). Failure to migrate: Lack of tree range expansion 945 
in response to climate change. Global Change Biology, 18(3), 1042–1052. doi: 946 
10.1111/j.1365-2486.2011.02571.x 947 

 948 
 949 
DATA ACCESSIBILITY 950 
Microsatellite genotype data are publicly available on Dryad: 951 
https://doi.org/10.5061/dryad.2280gb5pd 952 
 953 
 954 
AUTHOR CONTRIBUTION 955 
JPK, EMD, MAH and ICF designed and performed the research. JPK analysed the data. RFP, 956 
JKR and ICF supervised the research. EMD, MAH and ICF drafted sections of the manuscript. 957 
JPK wrote the final manuscript with input from all co-authors.958 

https://doi.org/10.5061/dryad.2280gb5pd


35 
 

Table 1 Hurricane-driven Avicennia germinans drift propagule survey sites and approximate over-water dispersal distances of 959 
unambiguously assigned propagules. Drift propagules were collected after Hurricane Irma at survey sites at or past the present-day A. 960 
germinans range margin and from one lower-latitude comparison site. nG, number of drift propagules genotyped; assign, number of 961 
drift propagules unambiguously assigned to a source. a Maximum Euclidean distance (the most conservative estimate of dispersal 962 
possible) differed considerably from maximum over-water distance. Maximum Euclidean distances were: MZ, 457 km; FP, 327 km.   963 
 964   

 
    

dispersal distance (km) 

Site Code Location Latitude Longitude nG assign median range 

Fort Clinch (inlet) F2 past margin 30.703 -81.445 99 53 109 74–109 

Fort Clinch (beach) F1 past margin 30.701 -81.434 100 60 109 74–230 

Amelia Island AI past margin 30.506 -81.453 100 61 91 56–165 

Little Talbot LT past margin 30.437 -81.407 100 54 81 46–307 

Hanna Beach H past margin 30.381 -81.397 99 49 75 40–149 

Vilano Inlet V margin 29.914 -81.289 99 50 24 12–146 

Matanzas Beach MB margin 29.710 -81.227 99 67 2 2–124 

Matanzas Inlet MZ margin 29.708 -81.231 100 54 36 1–1,135a 

Fort Pierce Inlet FP comparison 27.475 -80.291 100 31 10 10–870a 

 965 
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Table 2 Ten vagrant Avicennia germinans trees found at four locations beyond the most northern 966 
established population of this species. Three of the 10 trees were unambiguously assigned to the 967 
most southern range-margin source (source code: N/GS) and three of the 10 trees were identified 968 
as putative offspring of adjacent larger trees. assign, whether trees were unambiguously assigned 969 
to a source (or classified as putative offspring of adjacent trees); source, assigned source (or 970 
putative parent); dispersal distance, approximate over-water distance from the assigned source 971 
(Euclidean distance was identical). a Documented northernmost A. germinans (Williams et al., 972 
2014). 973      

dispersal 

Tree Latitude Longitude assign source distance (km) 

AI1 30.523646 -81.446147 no 
  

BT1 30.483861 -81.428389 no 
  

BT2 30.483641 -81.428397 offspring [BT1] 
 

FG1 30.421436 -81.422169 no 
  

FG2 30.430226 -81.421208 YES N/GS 80 

FG3 30.432978 -81.419474 YES N/GS 80 

FG4 30.432814 -81.419853 offspring [FG3] 
 

FG5 30.433205 -81.420011 offspring [FG3] 
 

NA1a 30.110310 -81.371722 no 
  

NA2a 30.109874 -81.371555 YES N/GS 45 

974 
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 975 

Figure 1 Survey sites for Avicennia germinans drift propagules (shown as yellow squares), vagrant A. germinans trees past the most 976 
northern established population of this species (shown as white triangles), and 12 potential source populations (shown as circles). (a) 977 
Path of Hurricane Irma shown with a dashed line (NOAA, 2017) and mangrove distribution shown in green (Giri et al., 2011). (b) 978 
Close-up of the location of three drift propagule survey sites, two vagrant trees, and the two northernmost Atlantic Florida source 979 
populations at the established A. germinans range margin (29.7 – 30.1°N). (c) Close-up of the location of five drift propagule survey 980 
sites and eight vagrant trees ~40-75 km past the present-day A. germinans range margin where no established populations exist (30.4 – 981 
30.7°N). Source population genetic data from Kennedy, Preziosi, et al. (2020a).982 
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 983 

Figure 2 Massive increases in Avicennia germinans propagule dispersal to Atlantic Florida 984 
beaches following Hurricane Irma (2017) compared to a non-hurricane year (2014). Two 985 
beaches were surveyed at the established range margin (29.71 – 29.91°N), three beaches past the 986 
range margin (30.40 – 30.70°N), and one lower-latitude beach within the mangrove-dominated 987 
continuous range core as a comparison (27.47°N).   988 
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 989 

Figure 3 Four vagrant Avicennia germinans trees, discovered past the most northern established 990 
population of this species, are as potentially reproductive as three mature trees at the present-day 991 
range margin of this species. (a) Heights and (b) mean inflorescence per terminal stem (i.e., 992 
potential reproductive output) of three range-margin trees (29.72oN; shown in light grey) and 993 
four vagrant trees (30.43 – 30.52oN; shown in dark grey).994 
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 995 

Figure 4 Hurricane-driven Avicennia germinans drift propagules were almost exclusively from the nearest sources. (a) Unambiguous 996 
assignment results for drift propagules from three survey sites at the present-day A. germinans range margin (29.7 – 29.9°N), from 997 
five survey sites past the range margin (30.3 – 30.7°N), and from one lower-latitude comparison site within the continuous range core 998 
(27.4°N). (b) Histograms of approximate over-water dispersal distances for unambiguously assigned propagules at each of the survey 999 
sites. Median distance is shown with a dashed line and bin width is 25 km. Note: y-axes vary among survey sites. Refer to Figure 1 for 1000 
geographic locations of the 12 potential sources from northeast Florida (Atlantic coast) to northwest Florida (Gulf coast). Refer to 1001 
Table S6 and Figure S3 for Euclidean dispersal distances. 1002 

 1003 

SUPPORTING INFORMATION 1004 
Additional supporting information may be found online in the Supporting Information section at the end of the article. 1005 


