3,082 research outputs found

    The electrorheology of suspensions consisting of Na-Fluorohectorite synthetic clay particles in silicon oil

    Full text link
    Under application of an electric field greater than a triggering electric field Ec0.4E_c \sim 0.4 kV/mm, suspensions obtained by dispersing particles of the synthetic clay fluoro-hectorite in a silicon oil, aggregate into chain- and/or column-like structures parallel to the applied electric field. This micro-structuring results in a transition in the suspensions' rheological behavior, from a Newtonian-like behavior to a shear-thinning rheology with a significant yield stress. This behavior is studied as a function of particle volume fraction and strength of the applied electric field, EE. The steady shear flow curves are observed to scale onto a master curve with respect to EE, in a manner similar to what was recently found for suspensions of laponite clay [42]. In the case of Na-fluorohectorite, the corresponding dynamic yield stress is demonstrated to scale with respect to EE as a power law with an exponent α1.93\alpha \sim 1.93, while the static yield stress inferred from constant shear stress tests exhibits a similar behavior with α1.58\alpha \sim 1.58. The suspensions are also studied in the framework of thixotropic fluids: the bifurcation in the rheology behavior when letting the system flow and evolve under a constant applied shear stress is characterized, and a bifurcation yield stress, estimated as the applied shear stress at which viscosity bifurcation occurs, is measured to scale as EαE^\alpha with α0.5\alpha \sim 0.5 to 0.6. All measured yield stresses increase with the particle fraction Φ\Phi of the suspension. For the static yield stress, a scaling law Φβ\Phi^\beta, with β=0.54\beta = 0.54, is found. The results are found to be reasonably consistent with each other. Their similarities with-, and discrepancies to- results obtained on laponite-oil suspensions are discussed

    A Nexafs Study of Nitric Oxide Layers Adsorbed from a nitrite Solution onto a Pt(111) Surface

    Full text link
    NO molecules adsorbed on a Pt(111) surface from dipping in an acidic nitrite solution are studied by near edge X-ray absorption fine structure spectroscopy (NEXAFS), X-ray photoelectron spectroscopy (XPS), low energy electron diffraction (LEED) and scanning tunnelling microscopy (STM) techniques. LEED patterns and STM images show that no long range ordered structures are formed after NO adsorption on a Pt(111) surface. Although the total NO coverage is very low, spectroscopic features in N K-edge and O K-edge absorption spectra have been singled out and related to the different species induced by this preparation method. From these measurements it is concluded that the NO molecule is adsorbed trough the N atom in an upright conformation. The maximum saturation coverage is about 0.3 monolayers, and although nitric oxide is the major component, nitrite and nitrogen species are slightly co-adsorbed on the surface. The results obtained from this study are compared with those previously reported in the literature for NO adsorbed on Pt(111) under UHV conditions

    The main critical issues of the gym environment in an Italian city

    Get PDF
    BACKGROUND: The lack of a consistent national regulation regarding gym facilities, combined with the growth and transformation of the world of fitness, has led to an uncontrolled situation, where, especially in metropolitan areas, low cost gyms are continuously popping up, often not respecting the structural and hygienic requirements. AIM OF THE STUDY: Objective of this study is to evaluate the results of a monitoring programme about the gym environment, to highlight the main critical issues. METHODS: In 2018 a randomized sample of 90 gyms was inspected in Milan, using a checklist with three sections of inquiry and the resulting data were analysed through a series of multivariate regression models. RESULTS: As per the various aspects analysed, many outcomes with low scores concerned franchised gyms, which have shown to be unsatisfactory in many respects; in addition, the lack of L. pneumophila risk containment procedures has been observed in the facilities without a swimming pool, compared to those with it. CONCLUSIONS: The study results offer a clear picture of the gym environment, identifying many inadequacies for different hygienic and safety aspects; therefore, it has been possible to understand which issues need particular attention in order normalize the situation, which should be checked by future investigative steps

    Comparing continuous and intermittent exercise. An "isoeffort" and "isotime" approach

    Get PDF
    The present study proposes an alternative way of comparing performance and acute physiological responses to continuous exercise with those of intermittent exercise, ensuring similar between-protocol overall effort (isoeffort) and the same total duration of exercise (isotime). This approach was expected to overcome some drawbacks of traditional methods of comparison. Fourteen competitive cyclists (20±3 yrs) performed a preliminary incremental test and four experimental 30-min self-paced protocols, i.e. one continuous and three passive-recovery intermittent exercise protocols with different workto- rest ratios (2 = 40:20s, 1 = 30:30s and 0.5 = 20:40s). A "maximal session effort" prescription was adopted for this experimental design. As expected, a robust perceived exertion template was observed irrespective of exercise protocol. Similar between-protocol pacing strategies further support the use of the proposed approach in competitive cyclists. Total work, oxygen uptake and heart rate mean values were significantly higher (P<0.05) in the continuous compared to intermittent protocols, while lactate values were lower. Manipulating the work-to-rest ratio in intermittent exercise, total work, oxygen uptake and heart rate mean values decreased with the decrease in the work-to-rest ratio, while lactate values increased. Despite this complex physiological picture, all protocols showed similar ventilatory responses and a nearly perfect relationship between respiratory frequency and perceived exertion. In conclusion, our data indicate that overall effort and total duration of exercise are two critical parameters that should both be controlled when comparing continuous with intermittent exercise. On an isoeffort and isotime basis, the work-to-rest ratio manipulation affects physiological responses in a different way from what has been reported in literature with traditional methods of comparison. Finally, our data suggest that during intermittent exercise respiratory frequency reflects physiological strain better than oxygen uptake, heart rate and blood lactate

    In-depth description of Electrohydrodynamic conduction pumping of dielectric liquids: physical model and regime analysis

    Get PDF
    In this work, we discuss the fundamental aspects of Electrohydrodynamic (EHD) conduction pumping of dielectric liquids. We build a mathematical model of conduction pumping that can be applied to all sizes, down to microsized pumps. In order to do this, we discuss the relevance of the Electrical Double Layer (EDL) that appears naturally on nonmetallic substrates. In the process, we identify a new dimensionless parameter related to the value of the zeta potential of the substrate-liquid pair, which quantifies the influence of these EDLs on the performance of the pump. This parameter also describes the transition from EHD conduction pumping to electro-osmosis. We also discuss in detail the two limiting working regimes in EHD conduction pumping: ohmic and saturation. We introduce a new dimensionless parameter, accounting for the electric field enhanced dissociation that, along with the conduction number, allows us to identify in which regime the pump operates.Ministerio de Ciencia, Innovación y Universidades PGC2018-099217-B-I0

    Spatio-Temporal Analysis of Urban Acoustic Environments with Binaural Psycho-Acoustical Considerations for IoT-based Applications

    Get PDF
    Sound pleasantness or annoyance perceived in urban soundscapes is a major concern in environmental acoustics. Binaural psychoacoustic parameters are helpful to describe generic acoustic environments, as it is stated within the ISO 12913 framework. In this paper, the application of a Wireless Acoustic Sensor Network (WASN) to evaluate the spatial distribution and the evolution of urban acoustic environments is described. Two experiments are presented using an indoor and an outdoor deployment of a WASN with several nodes using an Internet of Things (IoT) environment to collect audio data and calculate meaningful parameters such as the sound pressure level, binaural loudness and binaural sharpness. A chunk of audio is recorded in each node periodically with a microphone array and the binaural rendering is conducted by exploiting the estimated directional characteristics of the incoming sound by means of DOA estimation. Each node computes the parameters in a different location and sends the values to a cloud-based broker structure that allows spatial statistical analysis through Kriging techniques. A cross-validation analysis is also performed to confirm the usefulness of the proposed system.Ingeniería, Industria y Construcció

    Experimental studies of ECRH/ECCD effects on Tearing Mode stability using the new TCV real-time control system

    Get PDF
    Abstract GP9.00075 submitted for the DPP10 Meeting of The American Physical Society
    corecore