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Abstract: Sound pleasantness or annoyance perceived in urban soundscapes is a major concern in
environmental acoustics. Binaural psychoacoustic parameters are helpful to describe generic acoustic
environments, as it is stated within the ISO 12913 framework. In this paper, the application of a
Wireless Acoustic Sensor Network (WASN) to evaluate the spatial distribution and the evolution of
urban acoustic environments is described. Two experiments are presented using an indoor and an
outdoor deployment of a WASN with several nodes using an Internet of Things (IoT) environment to
collect audio data and calculate meaningful parameters such as the sound pressure level, binaural
loudness and binaural sharpness. A chunk of audio is recorded in each node periodically with a
microphone array and the binaural rendering is conducted by exploiting the estimated directional
characteristics of the incoming sound by means of DOA estimation. Each node computes the
parameters in a different location and sends the values to a cloud-based broker structure that allows
spatial statistical analysis through Kriging techniques. A cross-validation analysis is also performed
to confirm the usefulness of the proposed system.
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1. Introduction

Noise has become a big problem in big cities. It has been shown that affects human behavior,
health and even children’s cognition [1]. Different measurements and studies of this environmental
factor have been performed in the past [2,3]. The normal way to do noise measurements is to collect
noise samples with a sound level meter, however this technique has many drawbacks. On the one
hand, only local measurements in a grid are taken and on the other, it is expensive due to the measuring
equipment and personnel costs. Moreover, these studies have been performed observing objective
parameters, the evaluation of the equivalent sound pressure level [4]. However, previous works have
shown that the evaluation of psychoacoustic parameters, such as loudness and sharpness, fits better to
the assessment of noise subjective annoyance [5,6]. Psychoacoustic research has been widely studied
and standards for evaluating subjective annoyance and calculating psychoacoustic parameters have
been created [7,8].
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In 2014, the International Standardization Organization introduced the standard ISO 12913 about
soundscape [9], following the recommendations of the COST action Soundscape [10]. The standard
defines the soundscape as: acoustic environment as perceived or experienced and/or understood by a
person or people, in context [9]. This context includes the relationships between person and activity
and place, in space and time. The interaction between the different actors in the acoustic environment
establish a dynamic context which is able to influence soundscape through different mechanisms as:
(1) the auditory sensation, (2) the interpretation of auditory sensation, and (3) the responses to the
acoustic environment. In this way, the soundscape differs from the acoustic environment (defined
as: sound at the receiver from all sound sources as modified by the environment). In this work, the
study is mainly oriented to the analysis of the acoustic environment, but as the evaluation is made
in terms of the estimation of the psycho-acoustic annoyance (because it is not related to the direct
subjective response of people) by using the Zwicker’s model. Here there is no specific qualification of
the sound by subjective perception, but the description of the environment with a simplified version
of the Zwicker’s model is used. This can be related to the subjective response, but this will be done in
a later study. Other aspects that tackle this study are related to the development of an infrastructure to
evaluate the acoustic environment in terms of binaural psycho-acoustic parameters and also its spatial
and temporal analysis.

In the context of modern urban planning and smart cities, IoT systems are receiving increasing
attention due to their ability to monitor different problematic areas within a population center [11,12].
These problems are mostly related to the environment, but also to e-Health, Intelligent Transportation
Systems (ITS) and other emerging technological areas with high demands [13–15].

This work explains the implementation of an IoT-based system oriented to gather binaural
psycho-acoustic information from indoor and outdoor environments. As the annoyance model
proposed uses only loudness and sharpness as the main parameters, some simplifications have
been made. In order to explain the performance of this parameters in the considered environments,
spatial and temporal analysis have been done in the measurements to check the validity of the spatial
statistical model proposed using kriging.

The paper is organised as follows: in Section 2, a brief state-of-the-art is sketched. In Section 3, the
theoretical and practical methodology used to deploy the experiments, both in indoor and outdoor
environments, with spatial statistical analysis (using kriging method) are described, discussing also
hardware, software and signal processing considerations. Also in the previous section, the procedure
to obtain the binaural loudness and sharpness is described. In Section 4, the results are presented and
discussed. Finally, Section 5 summarizes the main conclusions of this work.

2. Related Works

Different authors have implemented different monitoring systems for environmental noise and
have evaluated the related annoyance. The use of WASNs for noise monitoring was the main focus
of the works in [16,17]. The authors used a WASN with Tmote-Sky motes [18] and Tmote Invent
(TmI), for traffic noise monitoring using the equivalent level (Leq,T) and counting the number and
type of vehicles. In that deployment, the sampling frequency was set at 8 kHz. As an important
conclusion, the authors stated that Tmote-Sky had excessive self-noise making it inappropiate for
acquiring sound measurements, while, TmI offered good audio features. In that research, no specific
procedure for calibration was provided. In [19,20], the authors deployed a WASN in Ostrobothnia
(Finland). In these references, the authors evaluated different tests to assess the noise impact. They
measured the Leq,T with T = 125 ms using a sampling frequency of 33 kHz, with 14 calibrated nodes
(MicaZ from Crossbow -now MEMSIC- with an ad-hoc acquisition circuit to allow a dynamic range
of 60 dB), and synchronised during 96 h, they obtained good results. Other works such as [21–23]
used mobile phones for noise pollution monitoring. Although the authors obtained interesting results,
in this paper there is a lack of information about the recording conditions which means less accuracy
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in the noise measurements. When evaluating noise parameters, the location of the measuring devices
should follow specific rules [24].

In the previous works [16–23], the measurements focused on the Leq,T or its A-weighted version
(ITU-R 468), LeqA,T . The calculation of these measurements was made by applying a frequency-selective
filter that considers the frequency range around 3–6 kHz, where the human ear is most sensitive.

From the previous references, we can see similar works more oriented to the soundscape
description. In [25,26], the referred authors focus the description of the soundscape in the evaluation of
noise levels and psycho-acoustic parameters from recordings gathered in walk-around. However, none
of them include an analysis based on binaural psycho-acoustic annoyance, which probably should be
more accurate from the psycho-acoustic point of view in a human being.

In the literature, the evaluation of Psycho-acoustic Annoyance (PA) is mainly based on the work
by Zwicker & Fastl [27]. Different authors have tried to focus this research taking into account the
subjective perception combined with specific psychoacoustic parameters [28]. Loudness is an important
factor affecting the perceived psychoacoustic annoyance of a sound [27,29]. This parameter is defined
as the subjective intensity of sound, which qualifies sounds ranging from quiet to loud. It is mainly
related to the perceived amplitude of a sound. There are some models to evaluate this parameter
which deliver a numerical estimation of the loudness level based on some objective characteristics of
the sound. The best known models are Zwicker’s [27] and Moore’s [30], which are standardised in
the 2 parts of ISO 532 [8]. They are based on a monaural stimulus and pass through different filtering
stages which are similar to the ear natural filters and simulates the hearing system. Recently, new
research in psychoacoustics has shown that monaural loudness is not enough to assess the acoustic
loudness and different models for binaural loudness were developed [28,31]. The implementation of
the Zwicker’s model [32] allowed a computing perspective for loudness monitoring. In a previous
work [33], the authors developed a binaural loudness monitoring system by using the Zwicker’s model
and using binaural synthesis by means of a combination of Head-Related Transfer Functions (HRTFs)
and microphone array processing.

In [34], the authors evaluated the environmental noise with a mobile application and display
the results in a map using the kriging method. In [35], the authors measured 5 minutes sound
pressure level (SPL) values with a WASN and also evaluated spatial cross-validation using the kriging
method in a small city in Spain. In [36], the authors implemented a system oriented to compute
the psychoacoustic parameters in the server side from recorded audio chunks. In [33], the authors
implemented a edge-computing system by using different Raspberry Pi 3 (Rpi3) nodes in order
to perform an evaluation of performance when computing the binaural loudness directly on the
Rpi3 nodes.

In this paper, an improvement of the previous work [33] with the binaural loudness is done by
incorporating into the model the computation of the binaural sharpness. Moreover, a simplified version
of the Zwicker’s psycho-acoustic annoyance model is evaluated (assuming specific conditions), mainly
to assess the spatial distribution of the subjective annoyance in an indoor and outdoor environments.

3. Methodology

The implementation of a WASN to evaluate a simplified version of the psycho-acoustic annoyance
based on an IoT framework considers different steps: (a) the hardware and software implementation
of the nodes for the computation of psycho-acoustic parameters, (b) the IoT framework configuration
and (c) the cross-validation and spatial statistical analysis.

3.1. Binaural Sharpness

From the Zwicker’s model, the sharpness [37] defined as the centroid of the spectrum can be
calculated [38] by using the Equation (1)
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S = 0.11 ·
∫ 24Bark

0 L′(z) · g′(z) · z · dz∫ 24Bark
0 L′(z)dz

(1)

where for z < 14, g′(z) = 1 and for z ≥ 14, g′(z) = 0.00012 · z4 − 0.0056 · z3 + 0.1 · z2 − 0.81 · z + 3.51.
L′(z) is the specific loudness, which depends on the frequency in terms of Bark (i.e., z).

In [33], the procedure to obtain the binaural loudness is described. In the present work, the
binaural sharpness calculation is also implemented in order to evaluate a simplified version of the
psycho-acoustic annoyance. As the specific loudness is obtained for each 1/3-frequency band, left and
right sharpness is calculated using the weighting function g′(z) described in Equation (1) to compute
the value of the sharpness in each channel. In order to compute the binaural sharpness, the same
proportion value as in binaural loudness calculation (see Equation (2)) is applied [28].

BS =
3
4
· (Sl + Sr) (2)

3.2. Simplifications for the Zwicker’s Model

In this work, a simplified implementation of the Zwicker’s annoyance model is proposed.
Assuming, in this case, locations where the environmental noise have few tonal components that
provokes low inter-modulation in the environmental sound were selected. Here, the model could be
simplified by reducing Fluctuation Strength (F) and Roughness (R) components and making the term
wFR ≈ 0 in the Zwicker’s annoyance model [27]. With this simplification the equation for the PA is
presented in Equation (3)

PA = L5 · (1 + wS) (3)

where L5 is the percentile 5 for the loudness, and wS is (S− 1.75) · 0.25 log10(L5 + 10) if sharpness
S > 1.75 and 0 if sharpness S ≤ 1.75.

Here this simplification is needed, because at least at this moment the computation of binaural
loudness and sharpness takes a long time (5–6 s for a 1 s of recorded audio) with the Rpi3 nodes.
The use of more parameters in the model would collapse the computing capacity of the node for
monitoring uses.

The binaural psycho-acoustic annoyance (BPA) is introduced here like the PA but using
the binaural parameters (i.e., binaural loudness and binaural sharpness) to compute this
binaural annoyance.

3.3. Hardware and Software Implementation

The sensing and computing device is composed of two subsystems: the acquisition subsystem
and the processing core. The processing core is based on a Raspberry Pi [39] and the acquisition
subsystem is composed by an array of four microphones of a Sony PlayStation3 Eye camera (PS3-Eye).
The PS3-Eye microphone array works to process each channel using 16-bit depth and a sampling rate
of 16 kHz, with a signal-to-noise ratio (SNR) of 90 dB and a power consumption of 500 mAh. Different
works have used this device, mainly due to its camera, e.g., for eye tracking systems [40] or to improve
the precision of multi-touch displays [41], but also for sound source mapping [42]. In this work, the
principal device used is the microphone array for the audio capture of the acoustic sensor device.
The distance between the outermost microphones is 62 mm, and the two middle microphones have
reversed polarity. The device was located in two different environments (one indoor and one outdoor).

The core of the processing part of the node is a Rpi3 Model B, that it is used in the acquisition
and publishing stages. The technical characteristics of the Rpi3 include a 1.2 GHz 64-bit quad-core
ARMv8 CPU, 1 GB RAM, 40 GPIO pins, 4 USB ports, a full HDMI port, an 10/100MB Ethernet port
and integrated 802.11n Wireless LAN, and also Bluetooth Low Energy (BLE). Also, the USB ports and
the GPIO pins are a good solution, providing the Rpi with the possibility to have a range of peripherals
available, such as WiFi antennas, ZigBee modules, microphones, cameras and connections with other
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devices, e,g., Arduino. A Power-Over-Ethernet connection [43] was chosen to power the board, in
which an Ethernet cable provide both electrical power and data connection to the Rpi3.

The design of the device was made according to the model shown in Figure 1 [33]. In the
software section, the Rpi3 platform has a Linux-based OS used for the programming in a high-level
programming language, such as Python. The main tasks of the developed algorithm are: acquisition
and windowing of the audio signal, binaural synthesis, loudness and sharpness calculation, binaural
psycho-acoustic parameters calculation, monoaural signal creation, third-octave band filtering stage,
sound pressure level calculation, storage, publishing and processing of the results. Also, a copy of the
different parameters evaluated is stored in the internal memory of the Rpi3 sensing device.

First, the acquisition stage is carried out, recording the audio from the microphone array in
chunks of 1 second. Direction-Of-Arrival (DOA) estimates for a set of frequency bins are obtained by
processing the audio input from the two central microphones in the Short-Term Fourier Transform
(STFT) domain [33,44,45]. Then, in the following stage, the binaural synthesis is performed to create a
signal that imitates the human hearing system response by using HRTFs and the DOA information
resulting from the previous stage. Next, the binaural loudness and binaural sharpness are calculated
from the binaural signal synthesised. Finally, the results are uploaded to a Cloud-based service
(namely ThinkSpeak) for storing and publishing data. This service allows data processing, using the
ThinkSpeak API, allowing the connection with Matlab. This connection allows to compute the PA,
based on the approximation explained in Section 3.1 by Equation (3) and finally, the results are analysed
in RStudio to investigate the temporal and spatial correlation between the different nodes. Then, the
spatial statistics of the environment is analysed using the kriging method [46,47], in order to assess the
most annoying areas. This analysis is made by determining the interpolated PA in different locations
between the nodes and considering the error of this method. Finally, the evaluation is conducted
following a leave-one-out cross-validation approach with a linear model technique and analyzing the
Root Mean Squared Error (RMSE).

Figure 1. Diagram of the stages of the algorithm: acquisition, loudness and sharpness evaluation,
binaural processing, sound pressure level calculation, and publishing, storing and processing
(PA computation and spatial statistic processing) of the results.

At the same time, before the binaural synthesis stage, the monophonic channels are converted
into a monaural signal to extract acoustic parameters of the full spectrum Sound Pressure Level (SPL)
and from a third octave band A-filtering stage SPL (SPL(A)). In reference [30], the authors describe
in detail the calibration procedure of the nodes for the measurement of the SPL and the binaural
loudness and sharpness. Finally, these results are sent to the cloud and to the internal memory too.
Also, the correlation between temporal evolution of these parameters and the psycho-acoustic one’s
is determined.
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4. Results and Discussion

In this section, the WASN performance is evaluated carrying out two experiments in an indoor
and outdoor environment. Moreover, the results of these experiments are presented and analyzed.

The experiments planned for this work consider an indoor and an outdoor environment.
The indoor environment corresponds to the location of 4 nodes in different offices of the Computer
Science Dpt at the ETSE in the University of Valencia and the outdoor environment corresponds to
the location of different nodes in the façades of houses in a neighborhood from Murcia city close to a
highway. The system performance is evaluated and the results are presented and analysed. Figure 2
shows the ThingSpeak configuration for the data channels in the indoor environment, collecting SPL,
channels left and right for loudness (L), binaural loudness (BL), channels left and right for sharpness (S),
and binaural sharpness (BS).

Figure 2. Channel configuration detail in the ThingSpeak platform.

4.1. Indoor Environment

The different nodes considered in this experiment were placed at different offices in the third floor
of the first block in the ETSE. Here two offices (one with a professor and fluent activity of students
during few hours and other with only a professor working), the secretary office of the department
and a laboratory with one student working during several hours were selected. Although the activity
was different in each location, it was not too high, therefore the noise levels and the computed
psycho-acoustic annoyance had low variability. All the nodes were connected to Internet and every
node was linked to a different channel in the ThingSpeak platform during 8 h. Figure 3a shows the
location of the four nodes from the upper part of the building.

Table 1 shows the statistical values (mean and standard deviation) for each node for the indoor
measurements. Table 2 shows the correlation matrix of binaural loudness, binaural sharpness and SPL.

Table 1. Summary of statistical values (mean and standard deviation) for SPL, binaural loudness and
binaural sharpness in the indoor environment.

Indoor Loc. 1 Indoor Loc. 2 Indoor Loc. 3 Indoor Loc. 4

SPL(dBA) 35.61(0.60) 38.98(1.99) 33.75(2.99) 34.13(2.80)
Binaural Loudness 1.97(1.01) 1.98(0.39) 1.89(1.44) 1.68(1.36)
Binaural Sharpness 1.76(0.10) 1.81(0.05) 1.82(0.15) 2.02(0.13)



Sensors 2018, 18, 690 7 of 16

Table 2. Pearson’s correlation for SPL, binaural loudness and binaural sharpness in the
indoor environment.

Indoor Loc. 1 Indoor Loc. 2

binld binshrp SPL
binld 1.00 0.91 ∗ 0.85 ∗∗

binshrp 0.91 ∗∗ 1.00 0.75 ∗∗

SPL 0.85 ∗∗ 0.75 ∗∗ 1.00

binld binshrp SPL
1.00 −0.90 ∗∗ 0.96 ∗∗

−0.90 ∗∗ 1.00 −0.86 ∗∗

0.96 ∗∗ −0.86 ∗∗ 1.00

Indoor Loc. 3 Indoor Loc. 4

binld binshrp SPL
binld 1.00 0.37 ∗ 0.89 ∗∗

binshrp 0.37 ∗ 1.00 0.19
SPL 0.89 ∗∗ 0.19 1.00

binld binshrp SPL
1.00 −0.20 0.92 ∗∗

−0.20 1.00 −0.44 ∗∗

0.92 ∗∗ −0.44 ∗∗ 1.00
∗: p < 0.05; ∗∗: p < 0.01; p = significance.

4.2. Outdoor Environment Measurement

The outdoor environment corresponds to an urbanization near a highway. Therefore, the traffic
noise is considerable. The measurement points were located in two different lines of buildings.
The buildings in the second line (far away from the highway) are more protected from the traffic
noise, but these buildings are near a pedestrian area where some children were playing during few
hours. In this two different areas, the activity is also the criteria selected. In this location, five nodes
were placed in different façades of the urbanization houses. Nodes 1 and 2 were located in the ground
floor, nodes 3 and 4 were located in the second floor and node 5 was placed in the first floor. All of
them in the façade of the corresponding house. Figure 3b shows the location of these nodes.

(a)

GRITA-Binaural Psychoac. Annoy.

Outdoor measurement at a

urbanization in Murcia

Grita 1- Ground floor

Grita 2- Ground floor

Grita 3- 2n floor

Grita 5- 2n floor

Grita 4- 1st floor

Grita 4

Grita 2

Grita 1

Grita 3

Grita 5

(b)

Figure 3. Location of the measurement points for the indoor at ETSE (University of Valencia) (a) and
outdoor measurements at an urbanization near Murcia (b).

Table 3 shows the statistical values (mean and standard deviation) for each node for the outdoor
measurements. Table 4 shows the correlation matrix of binaural loudness, binaural sharpness and SPL.

Table 3. Summary of statistical values (mean and standard deviation) for SPL, binaural loudness and
binaural sharpness in the outdoor environment.

Outdoor Loc. 1 Outdoor Loc. 2 Outdoor Loc. 3 Outdoor Loc. 4 Outdoor Loc. 5

SPL(dBA) 38.54(4.84) 50.09(12.45) 39.73(1.93) 51.74(1.24) 53.72(14.02)
Binaural Loudness 4.53(2.40) 12.83(14.91) 4.95(0.74) 11.34(0.98) 17.39(15.95)
Binaural Sharpness 1.74(0.23) 1.85(0.40) 1.53(0.09) 1.44(0.08) 2.04(0.18)

As shown in Tables 2 and 4, correlation of the temporal series of the different considered
parameters (i.e., SPL, binaural loudness and binaural sharpness) show clear differences. This fact
is related to the different nature of the parameters considered. In general, SPL is more related to
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loudness, but sharpness differs, because it depends mainly on the centroid of the spectral content of
the signals in each environment.

Table 4. Pearson’s correlation for SPL, binaural loudness and binaural sharpness in the outdoor
environment.

Outdoor Loc. 1 Outdoor Loc. 2 Outdoor Loc. 3

binld binshrp SPL
binld 1.00 0.15 0.86 ∗∗

binshrp 0.15 1.00 0.40 ∗∗

SPL 0.86 ∗∗ 0.40 ∗∗ 1.00

binld binshrp SPL
1.00 0.87 ∗∗ 0.97 ∗∗

0.87 ∗∗ 1.00 0.89 ∗∗

0.97 ∗∗ 0.89 ∗∗ 1.00

binld binshrp SPL
1.00 0.63 ∗∗ 0.96 ∗∗

0.63 ∗∗ 1.00 0.58 ∗∗

0.96 ∗∗ 0.58 ∗∗ 1.00

Outdoor Loc. 4 Outdoor Loc. 5

binld binshrp SPL
binld 1.00 0.26 ∗∗ 0.21

binshrp 0.26 ∗∗ 1.00 0.96 ∗∗

SPL 0.21 0.96 ∗∗ 1.00

binld binshrp SPL
1.00 0.30 0.88 ∗∗

0.30 1.00 −0.02
0.88 ∗∗ −0.02 1.00

∗: p < 0.05; ∗∗: p < 0.01; p = significance.

4.3. Modelling and Cross-Validation of the Measurement Sets

Figure 4a,b show the results of the descriptive analysis of the BPA in every location in the indoor
and the outdoor environment.

In order to perform a validation of the values and the number of selected points for the linear
modeling of the set of measured values, a Leave-One-Out-Cross-Validation algorithm in R-Studio
software package (with the “Linear Model” method) was used for the whole set of time-averaged
measurements, corresponding to the spatial locations. In Table 5 the results of this test are shown
in order to select the nodes in the indoor environment. A linear model is generated to predict the %
established in the first column (%test/%training) with the mean value of the BPA in every location.
In this table, Rsquared is the Pearson’s squared correlation coefficient and MAE is the maximum
absolute error. RMSE is the minimum of the list of results obtained with this algorithm. According to
this table, the selection of a validation set with 60% of the nodes is enough for our network. Table 6
shows the results of the cross-correlation test to predict the temporal values of BPA in the indoor
environment. In addition, a linear model is generated to predict the values of BPA in the test percentage
established in the first column (as in the previous case). Here, the whole temporal series was used
in each location and from these results we can predict with high accuracy the test values training the
model with the 50% of the measurements (as shown the RMSE and MAE values).

In Table 7, the results of the test to select the nodes in the outdoor environment are presented.
This prediction is made using a linear model for the % established in the first column (%test/%training)
with the mean value of the BPA at each location. According to this table, the selection of a validation
set with 60% of the nodes is enough for the network of measuring platforms. Table 8 shows the results
of the cross-correlation test to predict the temporal values of BPA in the outdoor environment and
generates a linear model to predict the values of BPA in the test percentage established in the first
column (as in the previous case). As in the previous case, we used the whole temporal series in each
location and from this results we can predict quite well the test values training the model with the 50%
of the measurements (as shown the RMSE and MAE values).

It can be seen that in both cases (the indoor and outdoor environments), the relationship between
the BPA and binaural loudness + binaural sharpness is better correlated than the BPA and SPL.

In this case, location 4 in the outdoor environment corresponds to the place of the most exposed
node to the traffic noise. Therefore, as the variance of the temporal values for the SPL and the binaural
loudness and sharpness is the lowest one (see Table 3), both for the test set and the training set,
the random selection of time samples for the LOOCV gave for the RMSE and MAE a very low value in
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the cases of 80% and 50% of the training set, making a really good matching for the temporal prediction
of the SPL and the BPA (from the binaural loudness and sharpness).

(a) (b)

Figure 4. Box diagram of the BPA indoor (a) and outdoor values (b).

Table 5. Summary of spatial average Leave-One-Out-Cross-Validation test with a Linear Model method
for the indoor environment.

BPA vs. BinLdn+BinShrp BPA vs. BinSPL
Test%/Training% RMSE Rsquared MAE RMSE Rsquared MAE

25%/75% 0.1642 0.6842 0.1095 0.0809 0.1896 0.0745
50%/50% 0.02593687 1 0.02593687 0.02593687 1 0.02593687

Table 6. Summary of temporal Leave-One-Out-Cross-Validation test with a Linear Model method in
each location for the indoor environment.

BPA vs. BinLdn+BinShrp BPA vs. BinSPL
Test% / Training% RMSE Rsquared MAE RMSE Rsquared MAE

Location 1

10%/90% 0.0605 0.9993 0.0112 0.5316 0.0069 0.2323
20%/80% 0.0648 0.9995 0.0121 0.5658 0.0069 0.2379
30%/70% 0.0002 0.9999 0.0002 0.0429 0.0539 0.0333
40%/60% 0.0002 0.9999 0.0002 0.0434 1.707e-05 0.0345
50%/50% 0.0002 0.9999 0.0002 0.0455 0.0314 0.0366

Location 2

10%/90% 0.0061 0.9999 0.0047 0.2725 0.9206 0.2090
20%/80% 0.0058 0.9999 0.0045 0.2676 0.9408 0.2075
30%/70% 0.0055 0.9999 0.0040 0.2702 0.9160 0.2094
40%/60% 0.0063 0.9999 0.0049 0.2808 0.9256 0.2231
50%/50% 0.0081 0.9998 0.0056 0.3702 0.6241 0.2407

Location 3

10%/90% 0.0774 0.9978 0.0375 0.8210 0.7546 0.5782
20%/80% 0.0907 0.9957 0.0395 0.7292 0.7217 0.5071
30%/70% 0.0817 0.9979 0.0356 0.9079 0.7355 0.6545
40%/60% 0.0473 0.9993 0.0229 0.9071 0.7418 0.6455
50%/50% 0.0869 0.9874 0.0370 0.6180 0.3623 0.3723

Location 4

10%/90% 0.0239 0.9998 0.0142 0.8508 0.6841 0.4118
20%/80% 0.0225 0.9988 0.0138 0.3474 0.7180 0.2322
30%/70% 0.0241 0.9982 0.0142 0.3714 0.5553 0.2362
40%/60% 0.0281 0.9998 0.0165 1.1018 0.6026 0.5194
50%/50% 0.0291 0.9998 0.0137 0.7437 0.8487 0.4502
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Table 7. Summary of spatial average Leave-One-Out-Cross-Validation test with a Linear Model method
for the outdoor environment.

BPA vs. BinLdn+BinShrp BPA vs. BinSPL
Test%/Training% RMSE Rsquared MAE RMSE Rsquared MAE

20%/80% 1.9719 0.8255 1.8525 4.1603 0.4163 3.1738
40%/60% 3.0859 0.9893 1.9617 4.8855 0.7218 3.3964

Table 8. Summary of temporal Leave-One-Out-Cross-Validation test with a Linear Model method in
each location for the outdoor environment.

BPA vs. BinLdn+BinShrp BPA vs. BinSPL
Test%/Training% RMSE Rsquared MAE RMSE Rsquared MAE

Location 1

10%/90% 0.1486 0.9966 0.1017 1.4697 0.6646 0.8459
20%/80% 0.1053 0.9984 0.0786 1.5376 0.6491 0.8508
30%/70% 0.1633 0.9964 0.1090 1.6677 0.6202 0.9639
40%/60% 0.1671 0.9886 0.1192 0.8162 0.7285 0.5695
50%/50% 0.1115 0.9987 0.0824 1.9067 0.6212 1.1335

Location 2

10%/90% 1.9266 0.9927 1.2462 7.2511 0.8973 5.3961
20%/80% 1.9589 0.9939 1.2616 7.8270 0.9025 5.7730
30%/70% 2.0966 0.9933 1.3753 7.6228 0.9119 5.9002
40%/60% 1.7522 0.9918 1.2066 6.8213 0.8759 5.1862
50%/50% 2.4489 0.9849 1.4635 8.6762 0.8098 5.8777

Location 3

10%/90% 0.0392 0.9960 0.0209 0.2068 0.8892 0.1478
20%/80% 0.0460 0.9969 0.0287 0.2445 0.9109 0.1722
30%/70% 0.0456 0.9971 0.0298 0.2753 0.8931 0.1912
40%/60% 0.0516 0.9965 0.0291 0.2873 0.8868 0.2036
50%/50% 0.0429 0.9979 0.0280 0.2988 0.8924 0.2026

Location 4

10%/90% 0.0945 0.9914 0.0367 0.5353 0.7214 0.3166
20%/80% 1.175e-15 1 7.772e-16 0.3548 0.8542 0.2496
30%/70% 0.1060 0.9907 0.0442 0.5217 0.7693 0.2925
40%/60% 0.1180 0.9855 0.0492 0.5771 0.6487 0.3158
50%/50% 7.390e-16 1 3.075e-16 0.4369 0.7464 0.2995

Location 5
10%/90% 0.8829 0.9975 0.7682 13.889 0.3949 9.1463
40%/60% 0.9831 0.9974 0.7740 16.168 0.2923 11.448
50%/50% 0.6828 0.9990 0.6348 13.927 0.5045 10.464

4.4. Spatial Statistical Analysis (Kriging Method)

Spatial statistics allows the use of several methods. The most common methods are Inverse
Distance Weighted (IDW), spline and kriging. IDW is a simple and intuitive deterministic interpolation
method based on principle that sample values closer to the prediction location have more influence on
prediction value than sample values farther apart. The major disadvantage of IDW is “bull’s eye” effect
and edgy surface. Spline is also a deterministic interpolation method which fits mathematical function
through input data to create smooth surface. Kriging is a method based on spatial autocorrelation [46].

The computed PA from the measurements of binaural loudness and sharpness establish a data
set in relation to different locations with its GPS coordinates, longitude and latitude. By denoting the
PA computed with the simplified Zwicker’s model at a location x as Y(x), this data set is defined as
{Y(x), x ∈ D}, whereD are all the locations of the modelling sets, following the kriging technique [47].

In this context, the objective of this proposed model is the prediction of Y(x0) in any location
x0, particularly those within the validation set. The annoyance reports contain information of the set
of covariables included. Therefore, Y(x) is modeled as a tendency function of the covariables better
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involved in the process which explains its variability in a large extent plus some random error which
is explained by the short term variability, i.e.,

Y(x) = µ(x) + δ(x), (4)

where µ(x) = E[Y(x)] and δ(x) is a stationary Gaussian process with zero mean, whose spatial
dependence characterization is given by the variogram γ [48]:

2γ(h) = Var [Y(x + h)−Y(x)] = Var [δ(x + h)− δ(x)] , (5)

where Var denotes the variance and h is an offset. This variogram represents the main function of
the kriging method, which presents different procedures such as simple kriging, ordinary kriging,
universal kriging, indicator kriging, co-kriging, etc, attending to different statistical aspects considered
in the covariable set. Ordinary kriging is the most widely used kriging method. It is used to estimate a
value at a point of a region for which a variogram is known, using data in the neighborhood of the
estimation location and also can be used to estimate a block value [49].

In this study, the variogram has been calculated, using ordinary kriging and a spherical model,
with the R statistical package for variogram fitting [50]. Figure 5a shows the spatial distribution of
the BPA in the indoor environment and Figure 5b shows the spatial distribution of the BPA in the
outdoor environment. The map shows the evaluation of the equation 3 with the kriging method
showing the points between the measuring points. Also Figure 6a,b show the relative error of the
kriging estimation showing that the error of the Kriging estimation is kept bounded inside the region
between the measuring points below 25% and grows up as the estimated point is in the outer part and
far away from the centroid of the measurement point.

(a) (b)

Figure 5. Spatial statistic prediction of BPA (with Spherical Kriging method) for the indoor (a) and
outdoor environments (b).

Figure 6 shows the relative error distribution obtained in the Kriging estimation. The estimation
absolute error range for the BPA in the indoor environment (see Figure 6a) is [0.0064, 0.1082] which
is reasonably low and is bellow the BPA obtained from measurements. The greater error is focused
in the region outside the building where no measurements are done. For the outdoor environment
(see Figure 6b), the estimation error range is [0.9525, 24.2659] which is a larger range compared to the
BPA obtained from measurements. The greater error is located in the region next to the highway.
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(a) (b)

Figure 6. Spatial statistic distribution of relative error from the Kriging method using mean values of BPA
in the nodes for the indoor (a) and outdoor environments (b).

4.5. A Preliminar Subjective Study

In order to check the subjective response in the indoor and outdoor environments, a short poll was
conducted to a group of people related to each environment. The poll asked for some social aspects
(gender and age) and the valuation of some aspects related to the soundscape, following the Swedish
Soundscape-Quality Protocol which assess the perceived affective quality using the following eight
adjectives: Pleasant, Unpleasant, Eventful, Uneventful, Monotonous, Exciting, Calm, and Noisy [51].

An Android application for mobile has been developed with the short poll (translated into
Spanish) to allow a quick data gathering of the surveyants. In order to locate the response of every
person answering the poll, the GPS coordinates have been registered with the same application.

The analysis of the results of this poll is shown in Table 9.

Table 9. Summary of statistical values for the evaluation of the on-site subjective survey.

Indoor Outdoor

% Gender (male/female) 40/60 46/54
% Ages (18-30, 30-45, 45-55, 55-65) 20/65/15/0 8/69/23/0

Mean and standard deviation values of:

Pleasant 4.35/0.45 3.96/0.71
Unpleasant 1.65/0.45 2.10/0.58
Eventful 2.14/0.52 2.11/0.86
Uneventful 3.96/0.65 4.08/0.86
Exciting 2.38/0.47 1.67/0.65
Monotonous 4.36/0.45 3.84/0.80
Calm 4.65/0.35 4.08/0.76
Noisy 1.93/0.85 2.23/1.09

According to this values the response in the indoor environment is generally qualified as pleasant
and mostly uneventful (calm and nearly monotonous), although at certain hours students make the
soundscape a bit exciting.

Taking into account the values in the outdoor environment, in general, the values are a little bit
higher for noisy and unpleasant, which means that the people living in this area seems to like the place
but stand the noise from the highway and like the noise made by children activities.
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5. Conclusions

In this work, an IoT system collecting information from each acoustic environment in different
environments (indoor and outdoor) is deployed. The nodes of the system gather audio information
and compute psycho-acoustic parameters (loudness and sharpness) performing the binaural synthesis
by considering the HRTFs. In the indoor environment, the nodes were placed in different rooms at
the Computer Science Department of the University of Valencia and in the outdoor environment, the
nodes were located in the outdoor of different houses in a residential area in Murcia.

From the binaural psycho-acoustic parameters gathered and the SPL, different statistical analysis
were done. The correlation between these parameters was performed, showing that the binaural
loudness and the SPL correlated well in nearly every location (indoor and outdoor, at a 99%
significance level). Also, the binaural sharpness worked fine with the SPL, but with smaller Pearson
coefficient values.

From the simplified version of the Zwicker’s Psycho-acoustic Annoyance model, the values of the
Binaural Psycho-acoustic Annoyance were computed to determine the subjective annoyance at each
node location in the indoor and outdoor environment. At this point, different cross-validation analysis
were done in order to determine the validity of the BPA spatial and temporal values. To this end, a
Leave-One-Out-Cross-Validation algorithm was used to determine the best modelling set (a good
training set was established with 50% of the values). In all cases (indoor and outdoor), the binaural
loudness and sharpness explained better the relationship with BPA than the sound pressure level,
both for spatial averages and for temporal series. Finally, a spatial statistical analysis was done in the
indoor and the outdoor environment by using an Ordinary Kriging technique. The error of the Kriging
estimation is kept bounded inside the region between the measuring points below 25% and grows up
outside this region. Also a short on-site subjective study has been done. According to the results, the
BPA model has been validated for the indoor and outdoor environment. Further work is needed for
the spatial validation of the subjective assessment.

Currently, further work is being done with the implementation of the complete Zwicker’s
Psycho-acoustic Annoyance model, adding the Roughness and Fluctuation Strength algorithms to the
implementation of the binaural model.
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