78 research outputs found

    Other Religions

    Get PDF
    The word ‘islam’ is derived from the root S L M which connotes surrender, submission, peace, security, safety, serenity, wholeness, healing and restoration. It is employed in the Qur’an and in the hadith literature in its etymological sense such that the entire creation of God is rendered to have submitted to God, or have become ‘muslims’ (the active participle of ‘islam’) with the exception of human beings who have been afforded the privilege of choosing to be or not to be ‘muslims.’ Download full text to read more.https://ir.stthomas.edu/encounteringislam/1021/thumbnail.jp

    Fasting

    Get PDF
    Fasting from eating and abstinence from certain foods has a long and venerable history in Judaism and Christianity. While the Mosaic Law established only the Day of Atonement (Yom Kippur) as a fast day (Lv 16:29-34; Nm 29:7), fasting is widely witnessed in the Old Testament as providing a certain spiritual force to one’s prayers or intensity to one’s interior life. Download full text to read more.https://ir.stthomas.edu/encounteringislam/1008/thumbnail.jp

    Marriage

    Get PDF
    Christian marriage is a complex interface between a natural reality that every culture knows and a supernatural reality that mediates God’s loving presence (grace) and facilitates sanctification (holiness). It is a prime example of the Thomas Aquinas’s dictum that grace builds on nature (S.T. Ia2ae.62.1). Christian reflection begins with Genesis and the creation of Adam and Eve. Download full text to read more.https://ir.stthomas.edu/encounteringislam/1016/thumbnail.jp

    The effect of dwarf galaxies disruption in semi-analytic models

    Get PDF
    We present results for a galaxy formation model that includes a simple treatment for the disruption of dwarf galaxies by gravitational forces and galaxy encounters within galaxy clusters. This is implemented a posteriori in a semi-analytic model by considering the stability of cluster dark matter sub-haloes at z=0. We assume that a galaxy whose dark matter substructure has been disrupted will itself disperse, while its stars become part of the population of intracluster stars responsible for the observed intracluster light. Despite the simplicity of this assumption, our results show a substantial improvement over previous models and indicate that the inclusion of galaxy disruption is indeed a necessary ingredient of galaxy formation models. We find that galaxy disruption suppresses the number density of dwarf galaxies by about a factor of two. This makes the slope of the faint end of the galaxy luminosity function shallower, in agreement with observations. In particular, the abundance of faint, red galaxies is strongly suppressed. As a result, the luminosity function of red galaxies and the distinction between the red and the blue galaxy populations in colour-magnitude relationships are correctly predicted. Finally, we estimate a fraction of intracluster light comparable to that found in clusters of galaxies.Comment: 7 pages, 6 figures, accepted for publication in MNRAS, 2 figures changed and references adde

    Dynamics of Line-Driven Winds from Disks in Cataclysmic Variables. II. Mass Loss Rates and Velocity Laws

    Full text link
    We analyze the dynamics of 2D stationary line-driven winds from accretion disks in cataclysmic variables (CVs), by generalizing the Castor, Abbott and Klein theory. In paper 1, we have solved the wind Euler equation, derived its two eigenvalues, and addressed the solution topology and wind geometry. Here, we focus on mass loss and velocity laws. We find that disk winds, even in luminous novalike variables, have low optical depth, even in the strongest driving lines. This suggests that thick-to-thin transitions in these lines occur. For disks with a realistic radial temperature, the mass loss is dominated by gas emanating from the inner decade in r. The total mass loss rate associated with a luminosity 10 Lsun is 10^{-12} Msun/yr, or 10^{-4} of the mass accretion rate. This is one order of magnitude below the lower limit obtained from P Cygni lines, when the ionizing flux shortwards of the Lyman edge is supressed. The difficulties with such small mass loss rates in CVs are principal, and confirm our previous work. We conjecture that this issue may be resolved by detailed nonLTE calculations of the line force within the context of CV disk winds, and/or better accounting for the disk energy distribution and wind ionization structure. We find that the wind velocity profile is well approximated by the empirical law used in kinematical modeling. The acceleration length scale is given by the footpoint radius of the wind streamline in the disk. This suggests an upper limit of 10 Rwd to the acceleration scale, which is smaller by factors of a few as compared to values derived from line fitting.Comment: 14 pages, 3 Postscript figures, also from http://www.pa.uky.edu/~shlosman/publ.html. Astrophysical Journal, submitte

    Pair decay width of the Hoyle state and carbon production in stars

    Get PDF
    The pair decay width of the first excited 0âș state in ÂčÂČC (the Hoyle state) is deduced from a novel analysis of the world data on inelastic electron scattering covering a wide momentum transfer range, thereby resolving previous discrepancies. The extracted value Γπ = (62.3 ± 2.0) ÎŒeV is independently confirmed by new data at low momentum transfers measured at the S-DALINAC and reduces the uncertainty of the literature values by more than a factor of three. A precise knowledge of Γπ is mandatory for quantitative studies of some key issues in the modeling of supernovae and of asymptotic giant branch stars, the most likely site of the slow-neutron nucleosynthesis process

    Baryon fractions in clusters of galaxies: evidence against a preheating model for entropy generation

    Get PDF
    The Millennium Gas project aims to undertake smoothed-particle hydrodynamic resimulations of the Millennium Simulation, providing many hundred massive galaxy clusters for comparison with X-ray surveys (170 clusters with kTsl > 3 keV). This paper looks at the hot gas and stellar fractions of clusters in simulations with different physical heating mechanisms. These fail to reproduce cool-core systems but are successful in matching the hot gas profiles of non-cool-core clusters. Although there is immense scatter in the observational data, the simulated clusters broadly match the integrated gas fractions within r500 . In line with previous work, however, they fare much less well when compared to the stellar fractions, having a dependence on cluster mass that is much weaker than is observed. The evolution with redshift of the hot gas fraction is much larger in the simulation with early preheating than in one with continual feedback; observations favour the latter model. The strong dependence of hot gas fraction on cluster physics limits its use as a probe of cosmological parameters.Comment: 16 pages, 18 figures, 4 tables. Accepted for publication in MNRA

    Fusion hindrance and roles of shell effects in superheavy mass region

    Get PDF
    We present the first attempt of systematically investigating the effects of shell correction energy for a dynamical process, which includes fusion, fusion-fission and quasi-fission processes. In the superheavy mass region, for the fusion process, shell correction energy plays a very important role and enhances the fusion probability when the colliding partner has a strong shell structure. By analyzing the trajectory in three-dimensional coordinate space with the Langevin equation, we reveal the mechanism of the enhancement of the fusion probability caused by `cold fusion valleys'. The temperature dependence of shell correction energy is considered.Comment: 31 pages, 23 figures, Accepted for publication in Nuclear Physics
    • 

    corecore