348 research outputs found
Sub-6-fs blue pulses generated by quasi-phase-matching second-harmonic generation pulse compression
Abstract. : We demonstrate a novel scalable and engineerable approach for the frequency-doubling of ultrashort pulses. Our technique is based on quasi-phase-matching and simultaneously provides tailored dispersion and nonlinear frequency conversion of few-cycle optical pulses. The method makes use of the spatial localization of the conversion process and the group velocity mismatch in a chirped grating structure. The total group delay of the nonlinear device can be designed to generate nearly arbitrarily chirped second-harmonic pulses from positively or negatively chirped input pulses. In particular, compressed second-harmonic pulses can be obtained. A brief summary of the underlying theory is presented, followed by a detailed discussion of our experimental results. We experimentally demonstrate quasi-phase-matching pulse compression in the sub-10-fs regime by generating few-cycle pulses in the blue to near-ultraviolet spectral range. Using this new frequency conversion technique, we generate sub-6-fs pulses centered at 405nm by second-harmonic generation from a 8.6fs Ti:sapphire laser pulse. The generated spectrum spans a bandwidth of 220THz. To our knowledge, these are the shortest pulses ever obtained by second-harmonic generatio
Quantum Zeno effect in a probed downconversion process
The distorsion of a spontaneous downconvertion process caused by an auxiliary
mode coupled to the idler wave is analyzed. In general, a strong coupling with
the auxiliary mode tends to hinder the downconversion in the nonlinear medium.
On the other hand, provided that the evolution is disturbed by the presence of
a phase mismatch, the coupling may increase the speed of downconversion. These
effects are interpreted as being manifestations of quantum Zeno or anti-Zeno
effects, respectively, and they are understood by using the dressed modes
picture of the device. The possibility of using the coupling as a nontrivial
phase--matching technique is pointed out.Comment: 11 pages, 4 figure
A high-flux source of polarization-entangled photons from a periodically-poled KTP parametric downconverter
We have demonstrated a high-flux source of polarization-entangled photons
using a type-II phase-matched periodically-poled KTP parametric downconverter
in a collinearly propagating configuration. We have observed quantum
interference between the single-beam downconverted photons with a visibility of
99% and a measured coincidence flux of 300/s/mW of pump. The
Clauser-Horne-Shimony-Holt version of Bell's inequality was violated with a
value of 2.711 +/- 0.017.Comment: 7 pages submitted to Physical Review
Counter-propagating entangled photons from a waveguide with periodic nonlinearity
The conditions required for spontaneous parametric down-conversion in a
waveguide with periodic nonlinearity in the presence of an unguided pump field
are established. Control of the periodic nonlinearity and the physical
properties of the waveguide permits the quasi-phase matching equations that
describe counter-propagating guided signal and idler beams to be satisfied. We
compare the tuning curves and spectral properties of such counter-propagating
beams to those for co-propagating beams under typical experimental conditions.
We find that the counter-propagating beams exhibit narrow bandwidth permitting
the generation of quantum states that possess discrete-frequency entanglement.
Such states may be useful for experiments in quantum optics and technologies
that benefit from frequency entanglement.Comment: submitted to Phys. Rev.
Mapping of periodically poled crystals via spontaneous parametric down-conversion
A new method for characterization of periodically poled crystals is developed
based on spontaneous parametric down-conversion. The method is demonstrated on
crystals of Y:LiNbO3, Mg:Y:LiNbO3 with non-uniform periodically poled
structures, obtained directly under Czochralski growth procedure and designed
for application of OPO in the mid infrared range. Infrared dispersion of
refractive index, effective working periods and wavelengths of OPO were
determined by special treatment of frequency-angular spectra of spontaneous
parametric down-conversion in the visible range. Two-dimensional mapping via
spontaneous parametric down-conversion is proposed for characterizing spatial
distribution of bulk quasi-phase matching efficiency across the input window of
a periodically poled sample.Comment: 19 pages, 6 figure
Dispersive properties of quasi-phase-matched optical parametric amplifiers
The dispersive properties of non-degenerate optical parametric amplification
in quasi-phase-matched (QPM) nonlinear quadratic crystals with an arbitrary
grating profile are theoretically investigated in the no-pump-depletion limit.
The spectral group delay curve of the amplifier is shown to be univocally
determined by its spectral power gain curve through a Hilbert transform. Such a
constraint has important implications on the propagation of spectrally-narrow
optical pulses through the amplifier. In particular, it is shown that anomalous
transit times, corresponding to superluminal or even negative group velocities,
are possible near local minima of the spectral gain curve. A possible
experimental observation of such effects using a QPM Lithium-Niobate crystal is
suggested.Comment: submitted for publicatio
Detector Description and Performance for the First Coincidence Observations between LIGO and GEO
For 17 days in August and September 2002, the LIGO and GEO interferometer
gravitational wave detectors were operated in coincidence to produce their
first data for scientific analysis. Although the detectors were still far from
their design sensitivity levels, the data can be used to place better upper
limits on the flux of gravitational waves incident on the earth than previous
direct measurements. This paper describes the instruments and the data in some
detail, as a companion to analysis papers based on the first data.Comment: 41 pages, 9 figures 17 Sept 03: author list amended, minor editorial
change
Entangled-Photon Generation from Parametric Down-Conversion in Media with Inhomogeneous Nonlinearity
We develop and experimentally verify a theory of Type-II spontaneous
parametric down-conversion (SPDC) in media with inhomogeneous distributions of
second-order nonlinearity. As a special case, we explore interference effects
from SPDC generated in a cascade of two bulk crystals separated by an air gap.
The polarization quantum-interference pattern is found to vary strongly with
the spacing between the two crystals. This is found to be a cooperative effect
due to two mechanisms: the chromatic dispersion of the medium separating the
crystals and spatiotemporal effects which arise from the inclusion of
transverse wave vectors. These effects provide two concomitant avenues for
controlling the quantum state generated in SPDC. We expect these results to be
of interest for the development of quantum technologies and the generation of
SPDC in periodically varying nonlinear materials.Comment: submitted to Physical Review
Search for Gravitational Waves from Primordial Black Hole Binary Coalescences in the Galactic Halo
We use data from the second science run of the LIGO gravitational-wave
detectors to search for the gravitational waves from primordial black hole
(PBH) binary coalescence with component masses in the range 0.2--.
The analysis requires a signal to be found in the data from both LIGO
observatories, according to a set of coincidence criteria. No inspiral signals
were found. Assuming a spherical halo with core radius 5 kpc extending to 50
kpc containing non-spinning black holes with masses in the range 0.2--, we place an observational upper limit on the rate of PBH coalescence
of 63 per year per Milky Way halo (MWH) with 90% confidence.Comment: 7 pages, 4 figures, to be submitted to Phys. Rev.
Engineered nonlinear lattices
We show that with the quasi-phase-matching technique it is possible to fabricate stripes of nonlinearity that trap and guide light like waveguides. We investigate an array of such stripes and find that when the stripes are sufficiently narrow, the beam dynamics is governed by a quadratic nonlinear discrete equation. The proposed structure therefore provides an experimental setting for exploring discrete effects in a controlled manner. In particular, we show propagation of breathers that are eventually trapped by discreteness. When the stripes are wide the beams evolve in a structure we term a quasilattice, which interpolates between a lattice system and a continuous system.Peer ReviewedPostprint (published version
- …
