11 research outputs found

    Peptide stapling by late-stage Suzuki-Miyaura cross-coupling

    Get PDF
    The development of peptide stapling techniques to stabilise alpha-helical secondary structure motifs of peptides led to the design of modulators of protein-protein interactions, which had been considered undruggable for a long time. We disclose a novel approach towards peptide stapling utilising macrocyclisation by late-stage Suzuki-Miyaura cross-coupling of bromotryptophan-containing peptides of the catenin-binding domain of axin. Optimisation of the linker length in order to find a compromise between both sufficient linker rigidity and flexibility resulted in a peptide with an increased alpha-helicity and enhanced binding affinity to its native binding partner beta-catenin. An increased proteolytic stability against proteinase K has been demonstrated

    Atmospheric fates of Criegee intermediates in the ozonolysis of isoprene

    Get PDF
    We use a large laboratory, modeling, and field dataset to investigate the isoprene + O_3 reaction, with the goal of better understanding the fates of the C_1 and C_4 Criegee intermediates in the atmosphere. Although ozonolysis can produce several distinct Criegee intermediates, the C_1 stabilized Criegee (CH_2OO, 61 ± 9%) is the only one observed to react bimolecularly. We suggest that the C_4 Criegees have a low stabilization fraction and propose pathways for their decomposition. Both prompt and non-prompt reactions are important in the production of OH (28% ± 5%) and formaldehyde (81% ± 16%). The yields of unimolecular products (OH, formaldehyde, methacrolein (42 ± 6%) and methyl vinyl ketone (18 ± 6%)) are fairly insensitive to water, i.e., changes in yields in response to water vapor (≤4% absolute) are within the error of the analysis. We propose a comprehensive reaction mechanism that can be incorporated into atmospheric models, which reproduces laboratory data over a wide range of relative humidities. The mechanism proposes that CH_2OO + H_2O (k_((H_2O)) ∼ 1 × 10^(−15) cm^3 molec^(−1) s^(−1)) yields 73% hydroxymethyl hydroperoxide (HMHP), 6% formaldehyde + H_2O_2, and 21% formic acid + H_2O; and CH_2OO + (H_2O)_2 (k_((H_2O)_2) ∼ 1 × 10^(−12) cm^3 molec^(−1) s^(−1)) yields 40% HMHP, 6% formaldehyde + H_2O_2, and 54% formic acid + H_2O. Competitive rate determinations (k_(SO_2/k(H_2O)n=1,2) ∼ 2.2 (±0.3) × 10^4) and field observations suggest that water vapor is a sink for greater than 98% of CH2OO in a Southeastern US forest, even during pollution episodes ([SO_2] ∼ 10 ppb). The importance of the CH_2OO + (H_2O)n reaction is demonstrated by high HMHP mixing ratios observed over the forest canopy. We find that CH_2OO does not substantially affect the lifetime of SO_2 or HCOOH in the Southeast US, e.g., CH_2OO + SO_2 reaction is a minor contribution (<6%) to sulfate formation. Extrapolating, these results imply that sulfate production by stabilized Criegees is likely unimportant in regions dominated by the reactivity of ozone with isoprene. In contrast, hydroperoxide, organic acid, and formaldehyde formation from isoprene ozonolysis in those areas may be significant

    rAAV Engineering for Capsid-Protein Enzyme Insertions and Mosaicism Reveals Resilience to Mutational, Structural and Thermal Perturbations

    No full text
    Recombinant adeno-associated viruses (rAAV) provide outstanding options for customization and superior capabilities for gene therapy. To access their full potential, facile genetic manipulation is pivotal, including capsid loop modifications. Therefore, we assessed capsid tolerance to modifications of the structural VP proteins in terms of stability and plasticity. Flexible glycine-serine linkers of increasing sizes were, at the genetic level, introduced into the 587 loop region of the VP proteins of serotype 2, the best studied AAV representative. Analyses of biological function and thermal stability with respect to genome release of viral particles revealed structural plasticity. In addition, insertion of the 29 kDa enzyme &beta;-lactamase into the loop region was tested with a complete or a mosaic modification setting. For the mosaic approach, investigation of VP2 trans expression revealed that a Kozak sequence was required to prevent leaky scanning. Surprisingly, even the full capsid modification with &beta;-lactamase allowed for the assembly of capsids with a concomitant increase in size. Enzyme activity assays revealed lactamase functionality for both rAAV variants, which demonstrates the structural robustness of this platform technology

    Tuning the Biological Activity of RGD Peptides with Halotryptophans

    No full text
    Kemker I, Schröder DC, Feiner R, Müller K, Marion A, Sewald N. Tuning the Biological Activity of RGD Peptides with Halotryptophans. Journal of Medicinal Chemistry. 2021;64(1):586–601.An array of l- and d-halotryptophans with different substituents at the indole moiety was synthesized employing either enzymatic halogenation by halogenases or incorporation of haloindoles using tryptophan synthase. Introduction of these Trp derivatives into RGD peptides as a benchmark system was performed to investigate their influence on bioactivity. Halotryptophan-containing RGD peptides display increased affinity toward integrin αvβ3 and enhanced selectivity over integrin α5β1. In addition, bromotryptophan was exploited as a platform for late-stage diversification by Suzuki–Miyaura cross-coupling (SMC), resulting in new-to-nature biaryl motifs. These peptides show enhanced affinity toward αvβ3, good affinity to αvβ8, and remarkable selectivity over α5β1 and αIIbβ3 while featuring fluorogenic properties. Their feasibility as a probe was demonstrated in vitro. Extensive molecular dynamics simulations were undertaken to elucidate NMR and high-performance liquid chromatography (HPLC) data for these late-stage diversified cyclic RGD peptides and to further characterize their conformational preferences

    Tuning the Biological Activity of RGD Peptides with Halotryptophanst

    No full text
    An array of L- and D-halotryptophans with different substituents at the indole moiety was synthesized employing either enzymatic halogenation by halogenases or incorporation of haloindoles using tryptophan synthase. Introduction of these Trp derivatives into RGD peptides as a benchmark system was performed to investigate their influence on bioactivity. Halotryptophan-containing RGD peptides display increased affinity toward integrin alpha(nu)beta(3) and enhanced selectivity over integrin alpha(5)beta(1). In addition, bromotryptophan was exploited as a platform for latestage diversification by Suzuki-Miyaura cross-coupling (SMC), resulting in new-to-nature biaryl motifs. These peptides show enhanced affinity toward alpha(nu)beta(3), good affinity to alpha(nu)beta(8), and remarkable selectivity over alpha(5)beta(1) and alpha(IIb)beta(3) while featuring fluorogenic properties. Their feasibility as a probe was demonstrated in vitro. Extensive molecular dynamics simulations were undertaken to elucidate NMR and high-performance liquid chromatography (HPLC) data for these late-stage diversified cyclic RGD peptides and to further characterize their conformational preferences

    Peptide stapling by late-stage Suzuki–Miyaura cross-coupling

    No full text
    Gruß H, Feiner R, Mseya R, et al. Peptide stapling by late-stage Suzuki–Miyaura cross-coupling. Beilstein Journal of Organic Chemistry. 2022;18:1-12.The development of peptide stapling techniques to stabilise α-helical secondary structure motifs of peptides led to the design of modulators of protein–protein interactions, which had been considered undruggable for a long time. We disclose a novel approach towards peptide stapling utilising macrocyclisation by late-stage Suzuki–Miyaura cross-coupling of bromotryptophan-containing peptides of the catenin-binding domain of axin. Optimisation of the linker length in order to find a compromise between both sufficient linker rigidity and flexibility resulted in a peptide with an increased α-helicity and enhanced binding affinity to its native binding partner β-catenin. An increased proteolytic stability against proteinase K has been demonstrated

    EGFR-Binding Peptides: From Computational Design towards Tumor-Targeting of Adeno-Associated Virus Capsids

    No full text
    The epidermal growth factor receptor (EGFR) plays a central role in the progression of many solid tumors. We used this validated target to analyze the de novo design of EGFR-binding peptides and their application for the delivery of complex payloads via rational design of a viral vector. Peptides were computationally designed to interact with the EGFR dimerization interface. Two new peptides and a reference (EDA peptide) were chemically synthesized, and their binding ability characterized. Presentation of these peptides in each of the 60 capsid proteins of recombinant adeno-associated viruses (rAAV) via a genetic based loop insertion enabled targeting of EGFR overexpressing tumor cell lines. Furthermore, tissue distribution and tumor xenograft specificity were analyzed with systemic injection in chicken egg chorioallantoic membrane (CAM) assays. Complex correlations between the targeting of the synthetic peptides and the viral vectors to cells and in ovo were observed. Overall, these data demonstrate the potential of computational design in combination with rational capsid modification for viral vector targeting opening new avenues for viral vector delivery and specifically suicide gene therapy

    A global initiative for ecological and evolutionary hologenomics

    No full text
    The Earth Hologenome Initiative (EHI) is a global collaboration to generate and analyse hologenomic data from wild animals and associated microorganisms using standardised methodologies underpinned by open and inclusive research principles. Initially focused on vertebrates, it aims to re-examine ecological and evolutionary questions by studying host–microbiota interactions from a systemic perspective
    corecore