1,168 research outputs found

    A Simultaneous Optical and X-ray Variability Study of the Orion Nebula Cluster. II. A Common Origin in Magnetic Activity

    Get PDF
    We present a statistical analysis of simultaneous optical and X-ray light curves, spanning 600 ks, for 814 pre-main-sequence (PMS) stars in the Orion Nebula Cluster. The aim of this study is to establish the relationship, if any, between the sites of optical and X-ray variability, and thereby to elucidate the origins of X-ray production in PMS stars. In a previous paper we showed that optical and X-ray variability in PMS stars are very rarely time-correlated. Here, using time-averaged variability indicators to examine the joint occurrences of optical and X-ray variability, we confirm that the two forms of variability are not directly causally related. However, a strong and highly statistically significant correlation is found between optical variability and X-ray luminosity. As this correlation is found to be independent of accretion activity, we argue that X-ray production in PMS stars must instead be intimately connected with the presence and strength of optically variable, magnetically active surface regions (i.e. spots) on these stars. Moreover, because X-ray variability and optical variability are rarely time-correlated, we conclude that the sites of X-ray production are not exclusively co-spatial with these regions. We argue that solar-analog coronae, heated by topologically complex fields, can explain these findings.Comment: To appear in the Astrophysical Journal. 33 pages, 3 figure

    Gaia Stellar Kinematics in the Head of the Orion A Cloud: Runaway Stellar Groups and Gravitational Infall

    Get PDF
    This work extends previous kinematic studies of young stars in the Head of the Orion A cloud (OMC-1/2/3/4/5). It is based on large samples of infrared, optical, and X-ray selected pre-main sequence stars with reliable radial velocities and Gaia-derived parallaxes and proper motions. Stellar kinematic groups are identified assuming they mimic the motion of their parental gas. Several groups are found to have peculiar kinematics: the NGC 1977 cluster and two stellar groups in the Extended Orion Nebula (EON) cavity are caught in the act of departing their birthplaces. The abnormal motion of NGC 1977 may have been caused by a global hierarchical cloud collapse, feedback by massive Ori OB1ab stars, supersonic turbulence, cloud-cloud collision, and/or slingshot effect; the former two models are favored by us. EON groups might have inherited anomalous motions of their parental cloudlets due to small-scale `rocket effects' from nearby OB stars. We also identify sparse stellar groups to the east and west of Orion A that are drifting from the central region, possibly a slowly expanding halo of the Orion Nebula Cluster. We confirm previously reported findings of varying line-of-sight distances to different parts of the cloud's Head with associated differences in gas velocity. Three-dimensional movies of star kinematics show contraction of the groups of stars in OMC-1 and global contraction of OMC-123 stars. Overall, the Head of Orion A region exhibits complex motions consistent with theoretical models involving hierarchical gravitational collapse in (possibly turbulent) clouds with OB stellar feedback.Comment: Accepted for publication in MNRAS. 26 pages, 13 figures. The two 3-D stellar kinematic movies, aimed as Supplementary Materials, can be found on YouTube at: https://youtu.be/B4GHCVvCYfo (`restricted' sample) and https://youtu.be/6fUu8sP0QFI (`full' sample

    A deep XMM-Newton X-ray observation of the Chamaeleon I dark cloud

    Get PDF
    Methods. The northern-eastern fringe of the Chameleon I dark cloud was observed with XMM-Newton, revisiting a region observed with ROSAT 15 years ago. Centered on the extended X-ray source CHXR49 we are able to resolve it into three major contributing components and to analyse their spectral properties. Furthermore, the deep exposure allows not only the detection of numerous, previously unknown X-ray sources, but also the investigation of variability and the study of the X-ray properties for the brighter targets in the field. We use EPIC spectra, to determine X-ray brightness, coronal temperatures and emission measures for these sources, compare the properties of classical and weak-line T Tauri stars and make a comparison with results from the ROSAT observation. Results. X-ray properties of T Tauri stars in Cha I are presented. The XMM-Newton images resolve some previously blended X-ray sources, confirm several possible ones and detect many new X-ray targets, resulting in the most comprehensive list with 71 X-ray sources in the northern Cha I dark cloud. The analysis of medium resolution spectra shows an overlapping distribution of spectral properties for classical and weak-line T Tauri stars, with the X-ray brighter stars having hotter coronae and a higher L_X/L_bol ratio. X-ray luminosity correlates with bolometric luminosity, whereas the L_X/L_bol ratio is slightly lower for the classical T Tauri stars. Large flares as well as a low iron and a high neon abundance are found in both types of T Tauri stars. Abundance pattern, plasma temperatures and emission measure distributions during quiescent phases are attributed toa high level of magnetic activity as the dominant source of their X-ray emission.Comment: 10 pages, 11 figures, accepted by A&

    Simultaneous X-ray, radio, near-infrared, and optical monitoring of Young Stellar Objects in the Coronet cluster

    Full text link
    Multi-wavelength (X-ray to radio) monitoring of Young Stellar Objects (YSOs) can provide important information about physical processes at the stellar surface, in the stellar corona, and/or in the inner circumstellar disk regions. While coronal processes should mainly cause variations in the X-ray and radio bands, accretion processes may be traced by time-correlated variability in the X-ray and optical/infrared bands. Several multi-wavelength studies have been successfully performed for field stars and approx. 1-10 Myr old T Tauri stars, but so far no such study succeeded in detecting simultaneous X-ray to radio variability in extremely young objects like class I and class 0 protostars. Here we present the first simultaneous X-ray, radio, near-infrared, and optical monitoring of YSOs, targeting the Coronet cluster in the Corona Australis star-forming region, which harbors at least one class 0 protostar, several class I objects, numerous T Tauri stars, and a few Herbig AeBe stars. [...] Seven objects are detected simultaneously in the X-ray, radio, and optical/infrared bands; they constitute our core sample. While most of these sources exhibit clear variability in the X-ray regime and several also display optical/infrared variability, none of them shows significant radio variability on the timescales probed. We also do not find any case of clearly time-correlated optical/infrared and X-ray variability. [...] The absence of time-correlated multi-wavelength variability suggests that there is no direct link between the X-ray and optical/infrared emission and supports the notion that accretion is not an important source for the X-ray emission of these YSOs. No significant radio variability was found on timescales of days.Comment: 11 pages, 11 figures, accepted for publication in A&A (06 Dec 2006

    Chandra/ACIS-I study of the X-ray properties of the NGC 6611 and M16 stellar population

    Full text link
    Mechanisms regulating the origin of X-rays in YSOs and the correlation with their evolutionary stage are under debate. Studies of the X-ray properties in young clusters allow to understand these mechanisms. One ideal target for this analysis is the Eagle Nebula (M16), with its central cluster NGC6611. At 1750 pc from the Sun, it harbors 93 OB stars, together with a population of low-mass stars from embedded protostars to disk-less Class III objects, with age <= 3Myrs. We study an archival 78 ksec Chandra/ACIS-I observation of NGC6611, and two new 80ksec observations of the outer region of M16, one centered on the Column V, and one on a region of the molecular cloud with ongoing star-formation. We detect 1755 point sources, with 1183 candidate cluster members (219 disk-bearing and 964 disk-less). We study the global X-ray properties of M16 and compare them with those of the Orion Nebula Cluster. We also compare the level of X-ray emission of Class II and Class III stars, and analyze the X-ray spectral properties of OB stars. Our study supports the lower level of X-ray activity for the disk-bearing stars with respect to the disk-less members. The X-ray Luminosity Function (XLF) of M16 is similar to that of Orion, supporting the universality of the XLF in young clusters. 85% of the O stars of NGC6611 have been detected in X-rays. With only one possible exception, they show soft spectra with no hard component, indicating that mechanisms for the production of hard X-ray emission in O stars are not operating in NGC 6611.Comment: Accepted in Ap

    A 1.3 cm wavelength radio flare from a deeply embedded source in the Orion BN/KL region

    Full text link
    Aims: Our aim was to measure and characterize the short-wavelength radio emission from young stellar objects (YSOs) in the Orion Nebula Cluster and the BN/KL star-forming region. Methods: We used the NRAO Very Large Array at a wavelength of 1.3 cm and we studied archival X-ray, infrared, and radio data. Results: During our observation, a strong outburst (flux increasing >10 fold) occurred in one of the 16 sources detected at a wavelength of 1.3cm, while the others remained (nearly) constant. This source does not have an infrared counterpart, but has subsequently been observed to flare in X-rays. Curiously, a very weak variable double radio source was found at other epochs near this position, one of whose components is coincident with it. A very high extinction derived from modeling the X-ray emission and the absence of an infrared counterpart both suggest that this source is very deeply embedded.Comment: 7 pages, 5 figures, accepted for publication in A&

    Probing grain boundaries in ceramic scintillators using x-ray radioluminescence microscopy

    Get PDF
    X-ray radioluminescence microscopy (XRLM), a novel fluorescence microscopy technique under focused x-ray excitation, was used to characterize micro-scale luminescence of Eu:Y2O3 and Ce:YAG transparent ceramics and bicrystals. The diffusion length of a known semiconductor measured by XRLM was found to be in agreement with previously measured values, illustrating its use for characterizing charge carrier transport. Emission intensity was found to drop at the boundaries in both Eu:Y2O3 and Ce:YAG ceramics and bicrystals. The depletion in emission at grain boundaries was ultimately found to be related to charge carrier depletion (through either deep trapping or non-radiative recombination). A charge carrier diffusion model was used to understand the effect of grain boundaries on charge carrier transport in these scintillators. The diffusion model was found to accurately predict the spatial distribution of emission in a Ce:YAG single-crystal as a function of x-ray excitation energy. Structural and chemical characterization of grain boundaries in an Eu:Y2O3 ceramic using transmission electron microscopy and secondary ion mass spectrometry mapping showed an ordered boundary region and no detectable segregation of impurities or Eu, justifying the use of an abrupt boundary condition to determine boundary recombination velocities in these materials. The boundary recombination velocities were then used to show that, for ceramics with grain sizes \u3e similar to 20 mu m, there would be a minimal effect from the detected charge carrier depletion at grain boundaries on their bulk x-ray radioluminescence intensity. Ultimately, this study illustrates how this new XRLM technique can be used to measure charge carrier diffusion properties and how it may be coupled with microstructural and micro-scale chemical analyses to fully investigate the effect of grain boundaries on scintillator properties

    Radio and X-ray variability of Young Stellar Objects in the Coronet Cluster

    Full text link
    The Coronet Cluster in the nearby R CrA dark cloud offers the rare opportunity to study at least four "class I" protostellar sources as well as one candidate "class 0" source, a Herbig Ae star, and a candidate brown dwarf within a few square arcminutes - most of them detected at radio- and X-ray wavelengths. These sources were observed with the Very Large Array (VLA) at 3.5cm on nine occasions in 1998, spread over nearly four months. The source IRS 5, earlier shown to emit circularly polarized radio emission, was observed to undergo a flux increase accompanied by changes in its polarization properties. Comparison with VLA measurements taken in January 1997 allows for some analysis of longer-term variability. In addition to this radio monitoring, we analyze archival Chandra and XMM-Newton X-ray data of these sources. Three class I protostars are bright enough for X-ray spectroscopy, and we perform a variability analysis for these sources, covering a total of 154 ksec spread over more than two and a half years. Also in X-rays, IRS 5 shows the most pronounced variability, whilst the other two class I protostars IRS 1 and IRS 2 have more stable emission. X-ray data is also analyzed for the recently identified candidate class 0 source IRS 7E, which shows strong variability as well as for the Herbig Ae star R CrA for which we find extremely hot X-ray-emitting plasma. For IRS 1,2 and 5, the hydrogen column densities derived from the X-ray spectra are at about half the values derived with near-infrared techniques, a situation similar to what has been observed towards some other young stellar objects.Comment: 17 pages, 11 figures, accepted for publication in A&
    • 

    corecore