534 research outputs found

    The Planetary Nebulae Spectrograph: the green light for Galaxy Kinematics

    Get PDF
    Planetary nebulae are now well established as probes of galaxy dynamics and as standard candles in distance determinations. Motivated by the need to improve the efficiency of planetary nebulae searches and the speed with which their radial velocities are determined, a dedicated instrument - the Planetary Nebulae Spectrograph or PN.S - has been designed and commissioned at the 4.2m William Herschel Telescope. The high optical efficiency of the spectrograph results in the detection of typically ~ 150 PN in galaxies at the distance of the Virgo cluster in one night of observations. In the same observation the radial velocities are obtained with an accuracy of ~ 20 km/sComment: Accepted by PASP, to appear November 2002; the figures have been degraded for archival purpose

    The Extinction and Distance of Maffei 1

    Full text link
    We have obtained low- and high-resolution spectra of the core of the highly-reddened elliptical galaxy Maffei 1. From these data, we have obtained the first measurement of the Mg2 index, and have measured the velocity dispersion and radial velocity with improved accuracy. To evaluate the extinction, a correlation between the Mg2 index and effective V-I colour has been established for elliptical galaxies. Using a new method for correcting for effective wavelength shifts, we find A_V = 4.67 +/- 0.19 mag, which is lower by 0.4 mag than previously thought. To establish the distance, the Fundamental Plane for elliptical galaxies has been constructed in I. The velocity dispersion of Maffei 1, measured to be 186.8 +/- 7.4 km/s, in combination with modern wide-field photometry in I, leads to a distance of 2.92 +/- 0.37 Mpc. The Dn-sigma relation, which is independently calibrated, gives 3.08 +/- 0.85 Mpc and 3.23 +/- 0.67 Mpc from photometry in B and K`, respectively. The weighted mean of the three estimates is 3.01 +/- 0.30 Mpc. The distance and luminosity make Maffei 1 the nearest giant elliptical galaxy. The radial velocity of Maffei 1 is +66.4 +/- 5.0 km/s, significantly higher than the accepted value of -10 km/s. The Hubble distance corresponding to the mean velocity of Maffei 1, Maffei 2 and IC342 is 3.5 Mpc. Thus, it is unlikely that Maffei 1 has had any influence on Local Group dynamics

    Exogenous surfactant application in a rat lung ischemia reperfusion injury model: effects on edema formation and alveolar type II cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prophylactic exogenous surfactant therapy is a promising way to attenuate the ischemia and reperfusion (I/R) injury associated with lung transplantation and thereby to decrease the clinical occurrence of acute lung injury and acute respiratory distress syndrome. However, there is little information on the mode by which exogenous surfactant attenuates I/R injury of the lung. We hypothesized that exogenous surfactant may act by limiting pulmonary edema formation and by enhancing alveolar type II cell and lamellar body preservation. Therefore, we investigated the effect of exogenous surfactant therapy on the formation of pulmonary edema in different lung compartments and on the ultrastructure of the surfactant producing alveolar epithelial type II cells.</p> <p>Methods</p> <p>Rats were randomly assigned to a control, Celsior (CE) or Celsior + surfactant (CE+S) group (n = 5 each). In both Celsior groups, the lungs were flush-perfused with Celsior and subsequently exposed to 4 h of extracorporeal ischemia at 4°C and 50 min of reperfusion at 37°C. The CE+S group received an intratracheal bolus of a modified natural bovine surfactant at a dosage of 50 mg/kg body weight before flush perfusion. After reperfusion (Celsior groups) or immediately after sacrifice (Control), the lungs were fixed by vascular perfusion and processed for light and electron microscopy. Stereology was used to quantify edematous changes as well as alterations of the alveolar epithelial type II cells.</p> <p>Results</p> <p>Surfactant treatment decreased the intraalveolar edema formation (mean (coefficient of variation): CE: 160 mm<sup>3 </sup>(0.61) vs. CE+S: 4 mm<sup>3 </sup>(0.75); p < 0.05) and the development of atelectases (CE: 342 mm<sup>3 </sup>(0.90) vs. CE+S: 0 mm<sup>3</sup>; p < 0.05) but led to a higher degree of peribronchovascular edema (CE: 89 mm<sup>3 </sup>(0.39) vs. CE+S: 268 mm<sup>3 </sup>(0.43); p < 0.05). Alveolar type II cells were similarly swollen in CE (423 Όm<sup>3</sup>(0.10)) and CE+S (481 Όm<sup>3</sup>(0.10)) compared with controls (323 Όm<sup>3</sup>(0.07); p < 0.05 vs. CE and CE+S). The number of lamellar bodies was increased and the mean lamellar body volume was decreased in both CE groups compared with the control group (p < 0.05).</p> <p>Conclusion</p> <p>Intratracheal surfactant application before I/R significantly reduces the intraalveolar edema formation and development of atelectases but leads to an increased development of peribronchovascular edema. Morphological changes of alveolar type II cells due to I/R are not affected by surfactant treatment. The beneficial effects of exogenous surfactant therapy are related to the intraalveolar activity of the exogenous surfactant.</p

    The circumstellar environment of T Tau S at high spatial and spectral resolution

    Full text link
    We have obtained the first high spatial (0.05'') and spectral (R~35000) resolution 2 micron spectrum of the T Tau S tight binary system using adaptive optics on the Keck II telescope. We have also obtained the first 3.8 and 4.7 micron images that resolve the three components of the T Tau multiple system, as well as new 1.6 and 2.2 micron images. Together with its very red near-infrared colors, the spectrum of T Tau Sb shows that this T Tauri star is extincted by a roughly constant extinction of Av~15 mag, which is probably the 0.7''x0.5'' circumbinary structure recently observed in absorption in the ultraviolet. T Tau Sa, which is also observed through this screen and is actively accreting, further possesses a small edge-on disk that is evidenced by warm (390 K), narrow overtone CO rovibrational absorption features in our spectrum. We find that T Tau Sa is most likely an intermediate-mass star surrounded by a semi-transparent 2-3 AU-radius disk whose asymmetries and short Keplerian rotation explain the large photometric variability of the source on relatively short timescales. We also show that molecular hydrogen emission exclusively arises from the gas that surrounds T Tau S and that its spatial and kinematic structure, while providing suggestive evidence for a jet-like structure, is highly complex.Comment: accepted for publication in the Astrophysical Journal; 41 pages, 10 figure

    Improved lung preservation relates to an increase in tubular myelin-associated surfactant protein A

    Get PDF
    BACKGROUND: Declining levels of surfactant protein A (SP-A) after lung transplantation are suggested to indicate progression of ischemia/reperfusion (IR) injury. We hypothesized that the previously described preservation-dependent improvement of alveolar surfactant integrity after IR was associated with alterations in intraalveolar SP-A levels. METHODS: Using immuno electron microscopy and design-based stereology, amount and distribution of SP-A, and of intracellular surfactant phospholipids (lamellar bodies) as well as infiltration by polymorphonuclear leukocytes (PMNs) and alveolar macrophages were evaluated in rat lungs after IR and preservation with EuroCollins or Celsior. RESULTS: After IR, labelling of tubular myelin for intraalveolar SP-A was significantly increased. In lungs preserved with EuroCollins, the total amount of intracellular surfactant phospholipid was reduced, and infiltration by PMNs and alveolar macrophages was significantly increased. With Celsior no changes in infiltration or intracellular surfactant phospholipid amount occurred. Here, an increase in the number of lamellar bodies per cell was associated with a shift towards smaller lamellar bodies. This accounts for preservation-dependent changes in the balance between surfactant phospholipid secretion and synthesis as well as in inflammatory cell infiltration. CONCLUSION: We suggest that enhanced release of surfactant phospholipids and SP-A represents an early protective response that compensates in part for the inactivation of intraalveolar surfactant in the early phase of IR injury. This beneficial effect can be supported by adequate lung preservation, as e.g. with Celsior, maintaining surfactant integrity and reducing inflammation, either directly (via antioxidants) or indirectly (via improved surfactant integrity)

    A Medium-Resolution Near-Infrared Spectral Library of Late Type Stars: I

    Full text link
    We present an empirical infrared spectral library of medium resolution (R~2000-3000) H (1.6 micron) and K (2.2 micron) band spectra of 218 red stars, spanning a range of [Fe/H] from ~-2.2 to ~+0.3. The sample includes Galactic disk stars, bulge stars from Baade's window, and red giants from Galactic globular clusters. We report the values of 19 indices covering 12 spectral features measured from the spectra in the library. Finally, we derive calibrations to estimate the effective temperature, and diagnostic relationships to determine the luminosity classes of individual stars from near-infrared spectra. This paper is part of a larger effort aimed at building a near-IR spectral library to be incorporated in population synthesis models, as well as, at testing synthetic stellar spectra.Comment: 34 pages, 12 figures; accepted for publication at ApJS; the spectra are available from the authors upon reques

    Sparse reconstruction from a limited projection number of the coronary artery tree in X-ray rotational imaging

    Get PDF
    International audienceThis paper deals with the 3D reconstruction of sparse data in X-ray rotational imaging. Due to the cardiac motion, the number of available projections for this reconstruction is equal to four, which leads to a strongly undersampled reconstruction problem. We address thus this illness problem through a regularized iterative method. The whole algorithm is divided into two steps. Firstly, a minimal path segmentation step extracts artery tree boundaries. Secondly, a MAP reconstruction comparing L0-norm and L1-norm priors is applied on this extracted coronary tree. The reconstruction optimization process relies on a separable paraboloidal (SPS) algorithm. Some preliminary results are provided on simulated rotational angiograms

    Traffic Instabilities in Self-Organized Pedestrian Crowds

    Get PDF
    In human crowds as well as in many animal societies, local interactions among individuals often give rise to self-organized collective organizations that offer functional benefits to the group. For instance, flows of pedestrians moving in opposite directions spontaneously segregate into lanes of uniform walking directions. This phenomenon is often referred to as a smart collective pattern, as it increases the traffic efficiency with no need of external control. However, the functional benefits of this emergent organization have never been experimentally measured, and the underlying behavioral mechanisms are poorly understood. In this work, we have studied this phenomenon under controlled laboratory conditions. We found that the traffic segregation exhibits structural instabilities characterized by the alternation of organized and disorganized states, where the lifetime of well-organized clusters of pedestrians follow a stretched exponential relaxation process. Further analysis show that the inter-pedestrian variability of comfortable walking speeds is a key variable at the origin of the observed traffic perturbations. We show that the collective benefit of the emerging pattern is maximized when all pedestrians walk at the average speed of the group. In practice, however, local interactions between slow- and fast-walking pedestrians trigger global breakdowns of organization, which reduce the collective and the individual payoff provided by the traffic segregation. This work is a step ahead toward the understanding of traffic self-organization in crowds, which turns out to be modulated by complex behavioral mechanisms that do not always maximize the group's benefits. The quantitative understanding of crowd behaviors opens the way for designing bottom-up management strategies bound to promote the emergence of efficient collective behaviors in crowds.Comment: Article published in PLoS Computational biology. Freely available here: http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.100244

    Ultrastructural changes of the intracellular surfactant pool in a rat model of lung transplantation-related events

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ischemia/reperfusion (I/R) injury, involved in primary graft dysfunction following lung transplantation, leads to inactivation of intra-alveolar surfactant which facilitates injury of the blood-air barrier. The alveolar epithelial type II cells (AE2 cells) synthesize, store and secrete surfactant; thus, an intracellular surfactant pool stored in lamellar bodies (Lb) can be distinguished from the intra-alveolar surfactant pool. The aim of this study was to investigate ultrastructural alterations of the intracellular surfactant pool in a model, mimicking transplantation-related procedures including flush perfusion, cold ischemia and reperfusion combined with mechanical ventilation.</p> <p>Methods</p> <p>Using design-based stereology at the light and electron microscopic level, number, surface area and mean volume of AE2 cells as well as number, size and total volume of Lb were determined in a group subjected to transplantation-related procedures including both I/R injury and mechanical ventilation (I/R group) and a control group.</p> <p>Results</p> <p>After I/R injury, the mean number of Lb per AE2 cell was significantly reduced compared to the control group, accompanied by a significant increase in the luminal surface area per AE2 cell in the I/R group. This increase in the luminal surface area correlated with the decrease in surface area of Lb per AE2. The number-weighted mean volume of Lb in the I/R group showed a tendency to increase.</p> <p>Conclusion</p> <p>We suggest that in this animal model the reduction of the number of Lb per AE2 cell is most likely due to stimulated exocytosis of Lb into the alveolar space. The loss of Lb is partly compensated by an increased size of Lb thus maintaining total volume of Lb per AE2 cell and lung. This mechanism counteracts at least in part the inactivation of the intra-alveolar surfactant.</p

    Shape optimization for the generalized Graetz problem

    Get PDF
    We apply shape optimization tools to the generalized Graetz problem which is a convection-diffusion equation. The problem boils down to the optimization of generalized eigen values on a two phases domain. Shape sensitivity analysis is performed with respect to the evolution of the interface between the fluid and solid phase. In particular physical settings, counterexamples where there is no optimal domains are exhibited. Numerical examples of optimal domains with different physical parameters and constraints are presented. Two different numerical methods (level-set and mesh-morphing) are show-cased and compared
    • 

    corecore