179 research outputs found

    Increasing Our Ability to Predict Contemporary Evolution

    Get PDF
    Classic debates concerning the extent to which scientists can predict evolution have gained new urgency as environmental changes force species to adapt or risk extinction. We highlight how our ability to predict evolution can be constrained by data limitations that cause poor understanding of deterministic natural selection. We then emphasize how such data limits can be reduced with feasible empirical effort involving a combination of approaches

    Are the apple maggot, Rhagoletis pomonella , and blueberry maggot, R. mendax , distinct species? Implications for sympatric speciation

    Full text link
    Rhagoletis pomonella (Walsh) and R. mendax (Curran) (Diptera: Tephritidae) are major economic pests of apple and blueberry fruits, respectively, in eastern North America. The taxonomic status of these flies as distinct species has been in dispute because of their close morphological similarity, broadly overlapping geographic distributions and inter-fertility in laboratory crosses. Starch gel electrophoresis of soluble proteins was performed to establish the extent of genetic differentiation and levels of gene flow between blueberry infesting populations of R. mendax and apple and hawthorn infesting populations of R. pomonella. R. mendax and R. pomonella were found to be genetically distinct sibling species as eleven out of total of twenty-nine allozymes surveyed possessed species specific alleles. Data from three sympatric apple and blueberry fly populations in Michigan indicated that these flies do not hybridize in nature and gave no evidence for nuclear gene introgression. Differences in host plant recognition were implicated as important pre-mating barriers to gene flow between R. pomonella and R. mendax ; a result supporting a sympatric mode of divergence for these flies. R. pomonella Walsh and R. mendax Curran sont respectivement deux mouches très nuisibles aux pommes et aux myrtilles du N E des USA. La position taxonomique de ces mouches comme espèces distinctes a été longtemps mise en doute par suite de leur grande ressemblance morphologique, de l'important chevauchement de leurs répartitions et de leur interfécondité au laboratoire. L'électophorèse sur gel d'amidon de protéines solubles a été utilisé pour établir l'importance de la différenciation génétique et du flux génique entre R. mendax contaminant des myrtilles et R. pomonella contaminant des pommiers et des aubépines. R. mendax et R. pomonella se sont révélées des espèces jumelles car, à l'exception de 11 alolozymes sur 29, chaque espèce possédait des allèles spécifiques. Les données concernant 3 populations sympatriques de mouches des myrtilles et des pommes du Michigan ont montré que des mouches ne s'hybrident pas dans la nature et n'ont fourni aucune indication sur une introgression de gènes nucléaires. Des différences concernant la découverte de hôtes sont impliquées comme obstacles prézygotiques importants au flux génique entre R. pomonella et R. mendax ; ce résultat conforte l'hypothèse d'une divergence sympatrique de ces mouches.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42712/1/10667_2004_Article_BF00186728.pd

    Ammonium Carbonate Is More Attractive Than Apple and Hawthorn Fruit Volatile Lures to Rhagoletis pomonella (Diptera: Tephritidae) in Washington State

    Get PDF
    The apple maggot fly, Rhagoletis pomonella (Walsh), is an introduced, quarantine pest of apple (Malus domestica Borkhausen) in the Pacific Northwest of the United States. In the eastern United States where the fly is native, fruit volatiles have been reported to be more attractive than ammonia compounds to R. pomonella. However, the opposite may be true in the western United States. Here, we determined whether newly identified western apple and western hawthorn fruit volatiles are more attractive than ammonium carbonate (AC) to R. pomonella in apple, black hawthorn, and ornamental hawthorn trees in western Washington State. In all three host trees, sticky red sphere or yellow panel traps baited with AC generally caught more flies than traps baited with lures containing the four newly developed fruit blends (modified eastern apple, western apple, western ornamental hawthorn, and western black hawthorn) or two older blends (eastern apple and eastern downy hawthorn). Fruit volatiles also displayed more variation among trapping studies conducted at different sites, in different host trees, and across years than AC. The results imply that traps baited with AC represent the best approach to monitoring R. pomonella in Washington Stat

    Ecological Adaptation and Speciation: The Evolutionary Significance of Habitat Avoidance as a Postzygotic Reproductive Barrier to Gene Flow

    Get PDF
    Habitat choice is an important component of most models of ecologically based speciation, especially when population divergence occurs in the face of gene flow. We examine how organisms choose habitats and ask whether avoidance behavior plays an important role in habitat choice, focusing on host-specific phytophagous insects as model systems. We contend that when a component of habitat choice involves avoidance, there can be repercussions that can have consequences for enhancing the potential for specialization and postzygotic reproductive isolation and, hence, for ecological speciation. We discuss theoretical and empirical reasons for why avoidance behavior has not been fully recognized as a key element in habitat choice and ecological speciation. We present current evidence for habitat avoidance, emphasizing phytophagous insects, and new results for parasitoid wasps consistent with the avoidance hypothesis. We conclude by discussing avenues for further study, including other potential roles for avoidance behavior in speciation related to sexual selection and reinforcement

    Comparing Peripheral Olfactory Coding with Host Preference in the Rhagoletis Species Complex

    Get PDF
    Recent studies have shown that flies from sympatric populations of Rhagoletis pomonella infesting hawthorn, apple, and flowering dogwood fruit can distinguish among unique volatile blends identified from each host. Analysis of peripheral chemoreception in Rhagoletis flies suggests that changes in receptor specificity and/or receptor neuron sensitivity could impact olfactory preference among the host populations and their hybrids. In an attempt to validate these claims, we have combined flight tunnel analyses and single sensillum electrophysiology in F2 and backcross hybrids displaying a variety of behavioral phenotypes. Results show that differences in peripheral chemoreception among second-generation adults do not provide a direct correlation between peripheral coding and olfactory behavior. We conclude that either the plasticity of the central nervous system in Rhagoletis can compensate for significant alterations in peripheral coding or that peripheral changes present subtle effects on behavior not easily detectable with current techniques. The results of this study imply that the basis for olfactory behavior in Rhagoletis has a complicated genetic and neuronal basis, even for populations with a recent divergence in preferenc

    Sympatric ecological speciation meets pyrosequencing: sampling the transcriptome of the apple maggot Rhagoletis pomonella

    Get PDF
    Background The full power of modern genetics has been applied to the study of speciation in only a small handful of genetic model species - all of which speciated allopatrically. Here we report the first large expressed sequence tag (EST) study of a candidate for ecological sympatric speciation, the apple maggot Rhagoletis pomonella, using massively parallel pyrosequencing on the Roche 454-FLX platform. To maximize transcript diversity we created and sequenced separate libraries from larvae, pupae, adult heads, and headless adult bodies. Results We obtained 239,531 sequences which assembled into 24,373 contigs. A total of 6810 unique protein coding genes were identified among the contigs and long singletons, corresponding to 48% of all known Drosophila melanogaster protein-coding genes. Their distribution across GO classes suggests that we have obtained a representative sample of the transcriptome. Among these sequences are many candidates for potential R. pomonella speciation genes (or barrier genes ) such as those controlling chemosensory and life-history timing processes. Furthermore, we identified important marker loci including more than 40,000 single nucleotide polymorphisms (SNPs) and over 100 microsatellites. An initial search for SNPs at which the apple and hawthorn host races differ suggested at least 75 loci warranting further work. We also determined that developmental expression differences remained even after normalization; transcripts expected to show different expression levels between larvae and pupae in D. melanogaster also did so in R. pomonella. Preliminary comparative analysis of transcript presences and absences revealed evidence of gene loss in Drosophila and gain in the higher dipteran clade Schizophora. Conclusions These data provide a much needed resource for exploring mechanisms of divergence in this important model for sympatric ecological speciation. Our description of ESTs from a substantial portion of the R. pomonella transcriptome will facilitate future functional studies of candidate genes for olfaction and diapause-related life history timing, and will enable large scale expression studies. Similarly, the identification of new SNP and microsatellite markers will facilitate future population and quantitative genetic studies of divergence between the apple and hawthorn-infesting host races

    Influence of Hydrodynamic Interactions on the Adsorption Process of Large Particles

    Full text link
    We have studied the adsorption process of non-Brownian particles on a line incorporating hydrodynamic interactionsa and we have numerically analyzed their effect on typical relevant quantities. We compare our model to the ballistic deposition model (BM) and address the limitations of BM in experimental situations. The results obtained can explain some differences observed between recent experiments and BM predictions.Comment: 10 pages, LaTeX. 4 Figures upon reques

    Experimental evidence of genome-wide impact of ecological selection during early stages of speciation-with-gene-flow

    Get PDF
    Theory predicts that speciation-with-gene-flow is more likely when the consequences of selection for population divergence transitions from mainly direct effects of selection acting on individual genes to a collective property of all selected genes in the genome. Thus, understanding the direct impacts of ecologically based selection, as well as the indirect effects due to correlations among loci, is critical to understanding speciation. Here, we measure the genome-wide impacts of host-associated selection between hawthorn and apple host races of Rhagoletis pomonella (Diptera: Tephritidae), a model for contemporary speciation-with-gene-flow. Allele frequency shifts of 32 455 SNPs induced in a selection experiment based on host phenology were genome wide and highly concordant with genetic divergence between co-occurring apple and hawthorn flies in nature. This striking genome-wide similarity between experimental and natural populations of R. pomonella underscores the importance of ecological selection at early stages of divergence and calls for further integration of studies of eco-evolutionary dynamics and genome divergence
    • …
    corecore