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Increasing our ability to predict
contemporary evolution
Patrik Nosil 1,2✉, Samuel M. Flaxman3, Jeffrey L. Feder4 & Zachariah Gompert2

Classic debates concerning the extent to which scientists can predict evolution
have gained new urgency as environmental changes force species to adapt or
risk extinction. We highlight how our ability to predict evolution can be con-
strained by data limitations that cause poor understanding of deterministic
natural selection. We then emphasize how such data limits can be reduced with
feasible empirical effort involving a combination of approaches.

What is predictability and why does it matter?
Prediction is a core component of the sciences. However, evolutionary biology is often portrayed
as a descriptive or historical science, rather than a predictive one1–3. Nonetheless, the predict-
ability of evolution can be quantified, for example by testing how well existing time series predict
future evolutionary changes (Fig. 1)1,4. Besides its scientific importance, our ability to predict
evolution has applied implications, for example for the development of vaccines and antibiotics
(i.e., viruses and bacteria evolve to be resistant), animal breeding programs aimed at con-
servation and reintroduction, and biocontrol of insect pests that attack crops and lumber.

Here we focus on predictability defined as the ability to forecast future trait values or allele
frequencies using existing data (Fig. 1). Such predictive ability can be studied using temporal
data alone, or by adding information on the mechanisms and genomic basis of evolution5. We
focus on contemporary evolution using time-series data spanning several to dozens of genera-
tions (i.e., in many organisms this will equate to decades), where evolution may proceed via
standing genetic variation or new mutations. This focus on medium-term evolution comple-
ments quantitative genetics work on the predictability of immediate, single-generation responses
to selection and studies that consider parallel and repeated evolution over longer (e.g., phylo-
genetic) time scales3,6.

Two hypotheses for limits in our ability to predict evolution
The degree to which evolution is predictable forms a long-standing debate in biology3,7. At the
core of this debate is the question of the extent to which evolution is driven by random versus
deterministic processes3 (Fig. 2). In this context, there are two main classes of explanation for
difficulties in predicting evolution. First, predictability can be limited by random processes (the
“random limits” hypothesis)8. The key mechanisms underlying this hypothesis are stochastic
changes in allele frequency due to genetic drift and the random nature of mutation. Second, even
evolution driven by deterministic natural selection can be difficult to predict, due to limited data
that in turn leads to poor understanding of selection and its environmental causes, trait varia-
tion, and inheritance4,9,10 (the “data limits” hypothesis). Indeed, a starting point for improving
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our ability to predict evolution is to increase understanding of
when selection is expected to be directional, fluctuating, or
stabilizing.

These explanations are not mutually exclusive and are likely to
operate simultaneously. However, they are conceptually
distinct due to core differences in the factors that they propose to
limit our ability to make accurate predictions; inherent unpre-
dictability caused by stochastic processes underlies the random
limits hypothesis, whereas insufficient knowledge on the part of
those trying to form predictions underlies the data limits
hypothesis.

In terms of the data limits hypothesis, the underlying
assumption is that with sufficient data and proper analysis,
deterministic processes can be predicted. Thus, shortcomings in
predictive ability stem largely from insufficient data and inade-
quate analytical tools, not from inherent randomness per se.
Limits to data and our understanding of evolutionary process can
arise at several levels. First, the environmental sources of selec-
tion, such as climatic conditions or predator abundance, might
fluctuate in ways that are themselves difficult to predict, even if
they are deterministic1. We stress that even deterministic envir-
onmental fluctuations might appear random, due to sensitivity to
initial conditions that generates chaotic dynamics11. Such chaotic
fluctuations are not truly random and our ability to predict them
is still, in principle, tied to data limits. Second, even if environ-
mental changes can be predicted, poor understanding of how
environmental factors affect resource distributions and impose
selection on phenotypes can reduce predictive ability for trait
evolution. Third, poor understanding of the genetic architecture
of traits can produce difficulties predicting genetic change from
patterns of phenotypic selection5,12. For example, prediction can
be complicated by phenotypic plasticity, which may be a common
way that organisms respond to environmental change13.

At all these levels, limits can arise in the quality or quantity of
data, and in analysis. Such data limits are exacerbated by the
potential for different factors to act at varying temporal and
spatial scales, and by the fact that rare and difficult to predict
environmental changes can have large effects on evolution. These
general concepts apply across environmental factors, traits, and
taxa, as outlined in Box1 using examples in birds, insects, and
other organisms.

Challenges and ways forward
The examples in Box1 illustrate how data limits in even well-
studied systems can mediate the extent to which scientists can
predict evolution. However, rather than dampening hope for
prediction, the results suggest that progress can be made with
empirical effort, for example via coupling long-term monitoring
of populations with large, replicated experiments that reveal
evolutionary process, and powerful genomic tools that allow
dissection of the genetic basis of traits. Nonetheless, gathering
such data will rarely be a trivial task. At a minimum, obtaining
time-series data necessarily takes time, and this cannot be sped up
with more effort. Identifying and measuring additional factors
affecting evolutionary dynamics, such as relevant environmental
parameters and selection estimates, increases the effort required.
Simulation models calibrated based on empirical understanding
of a system may aid in parsing the effects of different factors on
predictability (e.g., variation in selection, genetic architecture,
random drift), thus guiding researchers as to where further effort
is best placed, the sample sizes required to increase precision, etc.
Box 1 provides specific examples of how knowledge of a study
system can inform where additional empirical effort is best
placed, and Table 1 lists analytical tools that enable prediction.
Thus, we propose that focused data collection and analysis can
improve prediction of evolution. However, we temper this claim
with the caveat that this will not necessarily be an easy task,
particularly because the required measurements potentially span
different scales of time, space, and biological organization.

Moreover, many complexities make it difficult to obtain data
sufficient for accurate prediction (Fig. 3). An example of such a
complexity is where mutations interact with one another (i.e.,
epistasis), rather than having additive effects. Epistasis can cause
some genotypic combinations to have much higher fitness than
others. Thus, epistasis can cause even adaptive (i.e., non-neutral)
evolution to be mediated by historical contingencies in the type
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Fig. 1 Quantifying the predictability of short-term evolution using time-
series data. Autoregressive moving average (ARMA) models can be
applied to existing data to generate predictions for future trait values or
allele frequencies. In turn, the fit (e.g., r2 value) of these predicted values to
those actually observed provides a metric of the predictability of evolution.
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Fig. 2 Schematic illustration of two hypotheses for limitations on
predicting evolution. This includes depiction of the evolutionary processes
involved, and data which might be used to improve prediction. QTL
quantitative trait locus, GWA genome wide association.
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and order of mutations that arise14,15. Specifically, mutations that
arise early in evolution can strongly affect which mutations are
subsequently viable, making evolution dependent on mutation-
order and difficult to predict. For example, mutations that arise
early in the evolution of antibiotic resistance effect which sub-
sequent mutations are favored by natural selection15. Other
interactions, such as those between genes and the environment,
are likely to have similar effects for complicating prediction.

A related issue is sensitivity to initial conditions11, which can lead
to chaotic dynamics that are deterministic but impossible to predict

unless initial conditions are known with extreme precision. An
example where this might occur is evolution on highly rugged fit-
ness landscapes, where ruggedness arises due to epistasis. Here, the
starting place on a rugged landscape might strongly affect which
local fitness peaks are climbed and which valleys are difficult to
cross. Although biology may not have a strict counterpart to the
Heisenberg uncertainty principle, it is possible that data collection
itself alters starting conditions for evolution (e.g., if a human
observer scares away predators, this could affect predator-prey
dynamics for subsequent evolution). Chaos has received much

Box 1. | Examples of our ability to predict evolution in natural populations

We here discuss progress and challenges in predicting evolution using empirical examples. A first example involves fluctuating selection caused by
climatic variability, which has been documented in numerous species26–28; (Fig. 3a). Perhaps the best example stems from long-term studies of beak
size evolution in Darwin’s finches1. Here, variation in rainfall on Daphne Major has been shown to affect the relative abundances of small versus large
seeds, which in turn can exert selection on beak size in Geospiza fortis during drought conditions. Thus, rare and difficult-to-predict droughts can have
large effects on evolution. Indeed, in the case of G. fortis it could be argued that evolution is unpredictable not because we don’t understand selection
(i.e., selection is known to be exerted by seed size distributions), but rather because available data and models cannot predict climatic fluctuations, or
how these affect seed size distributions. Thus, prediction in this case was limited (r2 ~ 0.14, this value is a point estimate from autocorrelation analysis
of how well trait values for beaks in the past predict those in the future, see also Fig. 1)4, and might be improved via better climate models and data on
how climate affects resource distributions.
A second example involves predation, which is a common source of natural selection that can fluctuate according to prey characteristics (Fig. 3b). In
particular, predation can cause negative frequency-dependent selection (NFDS) when predators focus on more common prey types. In such cases, the
fitness of a phenotype fluctuates because it depends on the phenotype’s frequency in the population, and is higher when the phenotype is rare. This has
been documented, for example, in cichlids, guppies, stickleback, and stick insects4,29–31. Such systems represent cases where evolution is expected to
be easier to predict. Even with NFDS, however, data limits can apply, as illustrated by long-term studies of the evolution of striped and unstriped cryptic
color morphs in Timema cristinae stick insects4. In T. cristinae, morph frequencies fluctuate predictably among years (r2 ~ 0.90) and there is experimental
support for NFDS. Specifically, an experiment showed that the striped morph is strongly favored when initially rare (i.e., 20% initial frequency), but
shows idiosyncratic changes when initially common (80% initial frequency). Whether selection would differ if ratios were manipulated more extremely
is unclear. Moreover, why fluctuations occur at yearly, rather than monthly, scales is unknown. Thus, prediction might be improved by estimating the
quantitative form of the NFDS fitness function, and via understanding factors that affect the foraging behavior and search images of bird predators.
Nonetheless, evolution was highly predictable in this example, and the mechanisms of evolution are reasonably understood due to insights from
combining experiments and genomics. Specifically, experiments support NFDS and genomic data rule out a predominant role for random genetic drift,
and have clarified the role of epistasis32 and suppressed recombination in the evolution of color genes.

Table 1 Examples of data types and models that can aid the quantification of uncertainty related to predicting evolution over
moderate time scales.

Data type Model Key features Software
(citation)

Trait genetics Bayesian sparse linear mixed model (BSLMM) Estimates heritabilities, genetic covariances and number of
causal genetic variants while accounting for (and
quantifying) uncertainty in genotype-phenotype
associations

GEMMA12

Climatic variation Bayesian modeling of uncertainty in ensembles
of climate models

Generates future, predictive distributions of climatic
variation with uncertainty over different climate models

JAGS/STAN21

Ecological
interactions

N-level structural equation modeling (e.g.,
generalized linear latent and mixed models
(GLLAMM))

Multilevel extension of structural equation modeling that
allows for interactions across hierarchical levels in a
Bayesian context; can consider joint uncertainty of model
parameters and latent variables

xxM22

Evolution Forward genetic simulation models (e.g.,
Wright-Fisher and extensions with age
structured populations, etc.)

Flexible models that allow for drift, selection, gene flow,
and other evolutionary processes; can be fit in various
ways, and can incorporate ecological data

SLiM323

Time series Autoregressive moving average
models (ARMA)

Models that account for spatial or temporal
autocorrelation; of broad and general use for time-series
analysis

JAGS/STAN24

Combination of
data types

Hierarchical (multilevel) Bayesian models General class of flexible Bayesian models that can combine
disparate types of data to make joint inference of
evolutionary processes, considering uncertainty from each
source and integrated over sources

JAGS/STAN25

We focus mostly on hierarchical (i.e., multilevel) models that can be fit in a Bayesian context. Each model accounts for uncertainty (due to data limits or randomness) in a factor relevant for predicting
evolution, but an ideal analysis would combine these components to propagate information and uncertainty across these disparate components. We stress that the examples below are representative,
but by no means exhaustive.
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attention outside of the biological sciences and in the field of
ecology, but is not often considered in evolution.

All this said, there are also reasons for hope. For example, con-
ceptual and analytical frameworks from the scientific study of
complex systems exist to aid prediction of complex phenomena
(Table 1). Specifically, systems thinking focuses on understanding
and predicting how complex networks exhibit emergent properties
not shown by individual nodes in the network16. In terms of

evolution, this involves considering the dynamics of collective
networks of genes, populations, and interacting species, rather than
trying to use reductionist approaches to understand components in
isolation. Because systems approaches apply across scientific dis-
ciplines a qualitative analogy can be drawn between the current
state of a biological population and the ability to predict its future
state based on knowledge of the evolutionary forces operating on it,
and the current state of a physical system and the ability to predict
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its future state based on knowledge of the physical forces acting
upon it. In both physics and biology there is the distinction between
predictions for individual particles or genes versus the aggregate
behavior of many particles (as in statistical thermodynamics) or
genes (leading to quantitative genetic breeding values)17.

Conclusions
In conclusion, although collecting sufficient data for prediction
may often represent a formidable challenge, we argue that it is not
an insurmountable one. With creative application of emerging
technologies and analytical approaches we may improve our
ability to predict evolutionary patterns and processes. For
example, genomic tools will allow the inference of genetic details
such as non-linearities in the genotype-phenotype-fitness map18,
which can then be incorporated into models to improve predic-
tion. Box 1 provides an example where genomic tools, experi-
ments, and knowledge of genetic and ecological interactions were
used to aid prediction of evolution in stick insects. In turn,
improved ability to predict evolution may affect our under-
standing of ecological processes, because to the extent that evo-
lution can be predicted, perhaps so can its ecological
consequences for communities and ecosystems19.

A major avenue for future work is to expand the concepts
presented here across broader time scales, where the probability
of rare yet consequential events increases. Such longer-term
prediction will likely require combining contemporary time series
data with deeper phylogenetic patterns, and experimental tests of
evolutionary processes. Indeed, progress on this front is exem-
plified by long-term experimental evolution studies in microbes
that demonstrate the effects of rare yet consequential random
mutations20. Although only further work can reveal the extent to
which prediction can be realistically improved, we propose that
appreciable progress should be possible in at least some species.
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