323 research outputs found
Species status of Neisseria gonorrhoeae: Evolutionary and epidemiological inferences from multilocus sequence typing
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited - Copyright @ 2007 Bennett et al; licensee BioMed Central Ltd.Background: Various typing methods have been developed for Neisseria gonorrhoeae, but none provide the combination of discrimination, reproducibility, portability, and genetic inference that allows the analysis of all aspects of the epidemiology of this pathogen from a single data set. Multilocus sequence typing (MLST) has been used successfully to characterize the related organisms Neisseria meningitidis and Neisseria lactamica. Here, the same seven locus Neisseria scheme was used to characterize a diverse collection of N. gonorrhoeae isolates to investigate whether this method would allow differentiation among isolates, and to distinguish these three species. Results: A total of 149 gonococcal isolates were typed and submitted to the Neisseria MLST database. Although relatively few (27) polymorphisms were detected among the seven MLST loci, a total of 66 unique allele combinations (sequence types, STs), were observed, a number comparable to that seen among isolate collections of the more diverse meningococcus. Patterns of genetic variation were consistent with high levels of recombination generating this diversity. There was no evidence for geographical structuring among the isolates examined, with isolates collected in Liverpool, UK, showing levels of diversity similar to a global collection of isolates. There was, however, evidence that populations of N. meningitidis, N. gonorrhoeae and N. lactamica were distinct, with little support for frequent genetic recombination among these species, with the sequences from the gdh locus alone grouping the species into distinct clusters. Conclusion: The seven loci Neisseria MLST scheme was readily adapted to N. gonorrhoeae isolates, providing a highly discriminatory typing method. In addition, these data permitted phylogenetic and population genetic inferences to be made, including direct comparisons with N. meningitidis and N. lactamica. Examination of these data demonstrated that alleles were rarely shared among the three species. Analysis of variation at a single locus, gdh, provided a rapid means of identifying misclassified isolates and determining whether mixed cultures were present.This study is funded by the Wellcome Trust and European Unio
Genealogical typing of Neisseria meningitidis
Despite the increasing popularity of multilocus sequence typing (MLST), the most appropriate method for characterizing bacterial variation and facilitating epidemiological investigations remains a matter of debate. Here, we propose that different typing schemes should be compared on the basis of their power to infer clonal relationships and investigate the utility of sequence data for genealogical reconstruction by exploiting new statistical tools and data from 20 housekeeping loci for 93 isolates of the bacterial pathogen Neisseria meningitidis. Our analysis demonstrated that all but one of the hyperinvasive isolates established by multilocus enzyme electrophoresis and MLST were grouped into one of six genealogical lineages, each of which contained substantial variation. Due to the confounding effect of recombination, evolutionary relationships among these lineages remained unclear, even using 20 loci. Analyses of the seven loci in the standard MLST scheme using the same methods reproduced this classification, but were unable to support finer inferences concerning the relationships between the members within each complex
A generic mechanism in Neisseria meningitidis for enhanced resistance against bactericidal antibodies
The presence of serum bactericidal antibodies is a proven correlate of protection against systemic infection with the important human pathogen Neisseria meningitidis. We have identified three serogroup C N. meningitidis (MenC) isolates recovered from patients with invasive meningococcal disease that resist killing by bactericidal antibodies induced by the MenC conjugate vaccine. None of the patients had received the vaccine, which has been successfully introduced in countries in North America and Europe. The increased resistance was not caused by changes either in lipopolysaccharide sialylation or acetylation of the α2-9–linked polysialic acid capsule. Instead, the resistance of the isolates resulted from the presence of an insertion sequence, IS1301, in the intergenic region (IGR) between the sia and ctr operons, which are necessary for capsule biosynthesis and export, respectively. The insertion sequence led to an increase in the transcript levels of surrounding genes and the amount of capsule expressed by the strains. The increased amount of capsule was associated with down-regulation of the alternative pathway of complement activation, providing a generic mechanism by which the bacterium protects itself against bactericidal antibodies. The strains with IS1301 in the IGR avoided complement-mediated lysis in the presence of bactericidal antibodies directed at the outer membrane protein, PorA, or raised against whole cells
Phase variation mediates reductions in expression of surface proteins during persistent meningococcal carriage
Asymptomatic and persistent colonization of the upper respiratory tract by Neisseria meningitidis occurs despite elicitation of adaptive immune responses against surface antigens. A putative mechanism for facilitating host persistence of this bacterial commensal and pathogen is alterations in expression of surface antigens by simple sequence repeat (SSR)-mediated phase variation. We investigated how often phase variation occurs during persistent carriage by analyzing the SSRs of eight loci in multiple isolates from 21 carriers representative of 1 to 6 months carriage. Alterations in repeat number were detected by a GeneScan analysis and occurred at 0.06 mutations/gene/month of carriage. The expression states were determined by Western blotting and two genes, fetA and nadA, exhibited trends toward low expression states. A critical finding from our unique examination of combinatorial expression states, “phasotypes,” was for significant reductions in expression of multiple phase-variable surface proteins during persistent carriage of some strains. The immune responses in these carriers were examined by measuring variant-specific PorA IgG antibodies, capsular group Y IgG antibodies and serum bactericidal activity in concomitant serum samples. Persistent carriage was associated with high levels of specific IgG antibodies and serum bactericidal activity while recent strain acquisition correlated with a significant induction of antibodies. We conclude that phase-variable genes are driven into lower expression states during long-term persistent meningococcal carriage, in part due to continuous exposure to antibody-mediated selection, suggesting localized hypermutation has evolved to facilitate host persistence
Changes in serogroup and genotype prevalence among carried meningococci in the United Kingdom during vaccine implementation.
BACKGROUND: Herd immunity is important in the effectiveness of conjugate polysaccharide vaccines against encapsulated bacteria. A large multicenter study investigated the effect of meningococcal serogroup C conjugate vaccine introduction on the meningococcal population. METHODS: Carried meningococci in individuals aged 15-19 years attending education establishments were investigated before and for 2 years after vaccine introduction. Isolates were characterized by multilocus sequence typing, serogroup, and capsular region genotype and changes in phenotypes and genotypes assessed. RESULTS: A total of 8462 meningococci were isolated from 47 765 participants (17.7%). Serogroup prevalence was similar over the 3 years, except for decreases of 80% for serogroup C and 40% for serogroup 29E. Clonal complexes were associated with particular serogroups and their relative proportions fluctuated, with 12 statistically significant changes (6 up, 6 down). The reduction of ST-11 complex serogroup C meningococci was probably due to vaccine introduction. Reasons for a decrease in serogroup 29E ST-254 meningococci (from 1.8% to 0.7%) and an increase in serogroup B ST-213 complex meningococci (from 6.7% to 10.6%) were less clear. CONCLUSIONS: Natural fluctuations in carried meningococcal genotypes and phenotypes a can be affected by the use of conjugate vaccines, and not all of these changes are anticipatable in advance of vaccine introduction
Molecular epidemiology of meningococcal disease in England and Wales 1975–1995, before the introduction of serogroup C conjugate vaccines
A comprehensive meningococcal vaccine is yet to be developed. In the absence of a vaccine that immunizes against the serogroup B capsular polysaccharide, this can only be achieved by targeting subcapsular antigens, and a number of outer-membrane proteins (OMPs) are under consideration as candidates. A major obstacle to the development of such a vaccine is the antigenic diversity of these OMPs, and obtaining population data that accurately identify and catalogue these variants is an important component of vaccine design. The recently proposed meningococcal molecular strain-typing scheme indexes the diversity of two OMPs, PorA and FetA, that are vaccine candidates, as well as the capsule and multilocus sequence type. This scheme was employed to survey 323 meningococci isolated from invasive disease in England and Wales from 1975 to 1995, before the introduction of meningococcal conjugated serogroup C polysaccharide vaccines in 1999. The eight-locus typing scheme provided high typeability (99.4 %) and discrimination (Simpson's diversity index 0.94–0.99). The data showed cycling of meningococcal genotypes and antigenic types in the absence of planned interventions. Notwithstanding high genetic and antigenic diversity, most of the isolates belonged to one of seven clonal complexes, with 11 predominant strain types. Combinations of PorA and FetA, chosen on the basis of their prevalence over time, generated vaccine recipes that included protein variants found in 80 % or more of the disease isolates for this time period. If adequate immune responses can be generated, these results suggest that control of meningococcal disease with relatively simple protein component vaccines may be possible
Variation and molecular evolution of HmbR, the Neisseria meningitidis haemoglobin receptor
Meningococcal disease caused by serogroup B Neisseria meningitidis remains an important health problem in many parts of the world, and there are currently no comprehensive vaccines. Poor immunogenicity, combined with immunological identity to human sialic acids, have hindered the development of a serogroup B conjugate vaccine, resulting in the development of alternative vaccine candidates, including many outer-membrane protein (OMP)-based formulations. However, the design of protein-based meningococcal vaccines is complicated by the high level of genetic and antigenic diversity of the meningococcus. Knowledge of the extent and structuring of this diversity can have implications for the use of particular proteins as potential vaccine candidates. With this in mind, the diversity of the meningococcal OMP HmbR was investigated among N. meningitidis isolates representative of major hyper-invasive lineages. In common with other meningococcal antigens, the genetic diversity of hmbR resulted from a combination of intraspecies horizontal genetic exchange and de novo mutation. Furthermore, genealogical analysis showed an association of hmbR genes with clonal complexes and the occurrence of two hmbR families, A and B. Three variable regions (VR1–VR3), located in loops 2, 3 and 4, were observed with clonal complex structuring of VR types. A minority of codons (3.9 %), located within putative surface-exposed loop regions of a 2D model, were under diversifying selection, indicating regions of the protein likely to be subject to immune attack
Influence of the combination and phase variation status of the haemoglobin receptors HmbR and HpuAB on meningococcal virulence
Neisseria meningitidis can utilize haem, haemoglobin and haemoglobin–haptoglobin complexes as sources of iron via two TonB-dependent phase variable haemoglobin receptors, HmbR and HpuAB. HmbR is over-represented in disease isolates, suggesting a link between haemoglobin acquisition and meningococcal disease. This study compared the distribution of HpuAB and phase variation (PV) status of both receptors in disease and carriage isolates. Meningococcal disease (n = 214) and carriage (n = 305) isolates representative of multiple clonal complexes (CCs) were investigated for the distribution, polyG tract lengths and ON/OFF status of both haemoglobin receptors, and for the deletion mechanism for HpuAB. Strains with both receptors or only hmbR were present at similar frequencies among meningococcal disease isolates as compared with carriage isolates. However, >90 % of isolates from the three CCs CC5, CC8 and CC11 with the highest disease to carriage ratios contained both receptors. Strains with an hpuAB-only phenotype were under-represented among disease isolates, suggesting selection against this receptor during systemic disease, possibly due to the receptor having a high level of immunogenicity or being inefficient in acquisition of iron during systemic spread. Absence of hpuAB resulted from either complete deletion or replacement by an insertion element. In an examination of PV status, one or both receptors were found in an ON state in 91 % of disease and 71 % of carriage isolates. We suggest that expression of a haemoglobin receptor, either HmbR or HpuAB, is of major importance for systemic spread of meningococci, and that the presence of both receptors contributes to virulence in some strains
Species Status of Neisseria gonorrhoeae: Evolutionary and Epidemiological Inferences from MLST
Abstract Background Various typing methods have been developed for Neisseria gonorrhoeae, but none provide the combination of discrimination, reproducibility, portability, and genetic inference that allows the analysis of all aspects of the epidemiology of this pathogen from a single data set. Multilocus sequence typing (MLST) has been used successfully to characterize the related organisms Neisseria meningitidis and Neisseria lactamica. Here, the same seven locus Neisseria scheme was used to characterize a diverse collection of N. gonorrhoeae isolates to investigate whether this method would allow differentiation among isolates, and to distinguish these three species. Results A total of 149 gonococcal isolates were typed and submitted to the Neisseria MLST database. Although relatively few (27) polymorphisms were detected among the seven MLST loci, a total of 66 unique allele combinations (sequence types, STs), were observed, a number comparable to that seen among isolate collections of the more diverse meningococcus. Patterns of genetic variation were consistent with high levels of recombination generating this diversity. There was no evidence for geographical structuring among the isolates examined, with isolates collected in Liverpool, UK, showing levels of diversity similar to a global collection of isolates. There was, however, evidence that populations of N. meningitidis, N. gonorrhoeae and N. lactamica were distinct, with little support for frequent genetic recombination among these species, with the sequences from the gdh locus alone grouping the species into distinct clusters. Conclusion The seven loci Neisseria MLST scheme was readily adapted to N. gonorrhoeae isolates, providing a highly discriminatory typing method. In addition, these data permitted phylogenetic and population genetic inferences to be made, including direct comparisons with N. meningitidis and N. lactamica. Examination of these data demonstrated that alleles were rarely shared among the three species. Analysis of variation at a single locus, gdh, provided a rapid means of identifying misclassified isolates and determining whether mixed cultures were present
Binding of Complement Factor H to Loop 5 of Porin Protein 1A: A Molecular Mechanism of Serum Resistance of Nonsialylated Neisseria gonorrhoeae
Neisseria gonorrhoeae isolated from patients with disseminated infection are often of the porin (Por1A) serotype and resist killing by nonimmune normal human serum. The molecular basis of this resistance (termed stable serum resistance) in these strains has not been fully defined but is not related to sialylation of lipooligosaccharide. Here we demonstrate that Por1A bearing gonococcal strains bind more factor H, a critical downregulator of the alternative complement pathway, than their Por1B counterparts. This results in a sevenfold reduction in C3b, which is >75% converted to iC3b. Factor H binding to isogenic gonococcal strains that differed only in their porin serotype, confirmed that Por1A was the acceptor molecule for factor H. We identified a surface exposed region on the Por1A molecule that served as the binding site for factor H. We used gonococcal strains with hybrid Por1A/B molecules that differed in their surface exposed domains to localize the factor H binding site to loop 5 of Por1A. This was confirmed by inhibition of factor H binding using synthetic peptides corresponding to the putative exposed regions of the porin loops. The addition of Por1A loop 5 peptide in a serum bactericidal assay, which inhibited binding of factor H to the bacterial surface, permitted 50% killing of an otherwise completely serum resistant gonococcal strain. Collectively, these data provide a molecular basis to explain serum resistance of Por1A strains of N. gonorrhoeae
- …