3,922 research outputs found

    Localization and chemical forms of cadmium in plant samples by combining analytical electron microscopy and X-ray spectromicroscopy

    Get PDF
    International audienceCadmium (Cd) is a metal of high toxicity for plants. Resolving its distribution and speciation in plants is essential for understanding the mechanisms involved in Cd tolerance, trafficking and accumulation. The model plant Arabidopsis thaliana was exposed to cadmium under controlled conditions. Elemental distributions in the roots and in the leaves were determined using scanning electron microscopy coupled with energy dispersive X-ray microanalysis (SEM-EDX), and synchrotron-based micro X-ray fluorescence (μ-XRF), which offers a better sensitivity. The chemical form(s) of cadmium was investigated using Cd LIII-edge (3538 eV) micro X-ray absorption near edge structure (μ-XANES) spectroscopy. Plant μ-XANES spectra were fitted by linear combination of Cd reference spectra. Biological sample preparation and conditioning is a critical point because of possible artifacts. In this work we compared freeze-dried samples analyzed at ambient temperature and frozen hydrated samples analyzed at −170 °C. Our results suggest that in the roots Cd is localized in vascular bundles, and coordinated to S ligands. In the leaves, trichomes (epidermal hairs) represent the main compartment of Cd accumulation. In these specialized cells, μ-XANES results show that the majority of Cd is bound to O/N ligands likely provided by the cell wall, and a minor fraction could be bound to S-containing ligands. No significant difference in Cd speciation was observed between freeze-dried and frozen hydrated samples. This work illustrates the interest and the sensitivity of Cd LIII-edge XANES spectroscopy, which is applied here for the first time to plant samples. Combining μ-XRF and Cd LIII-edge μ-XANES spectroscopy offers promising tools to study Cd storage and trafficking mechanisms in plants and other biological samples

    High lateral portal for sparing the infrapatellar fat-pad during ACL reconstruction

    Get PDF
    SummaryDuring arthroscopic ACL reconstruction, intra-articular visualization can be compromised by the interposition of the infrapatellar fat pad (IPFP) between the scope and the notch. In this technical note, we describe our technique of using lateral higher arthroscopic portal, starting arthroscopy with the resection of the ligamentum mucosum and performing the tibial tunnel in 40° of knee flexion to optimise the intra-articular view without IPFP debridement. This technique was performed in 112 consecutive arthroscopic ACL reconstructions and compared to that in the previous 112 cases in which a conventional method was used. The use of this technique was associated with a shorter operative time and no increase in the difficulty in performing associated meniscal procedures

    Is nasal carriage of the main acquisition pathway for surgical-site infection in orthopaedic surgery?

    No full text
    International audienceThe endogenous or exogenous origin of , responsible for orthopaedic surgical-site infections (SSI), remains debated. We conducted a multicentre prospective cohort study to analyse the respective part of exogenous contamination and endogenous self-inoculation by during elective orthopaedic surgery. The nose of each consecutive patient was sampled before surgery. Strains of isolated from the nose and the wound, in the case of SSI, were compared by antibiotypes or pulsed-field gel electrophoresis (PFGE). A total of 3,908 consecutive patients undergoing orthopaedic surgery were included. Seventy-seven patients developed an SSI (2%), including 22 related to (0.6%). was isolated from the nose of 790 patients (20.2%) at the time of surgery. In the multivariate analysis, nasal carriage was found to be a risk factor for SSI in orthopaedic surgery. However, only nine subjects exhibiting SSI had been found to be carriers before surgery: when compared, three pairs of strains were considered to be different and six similar. In most cases of SSI, either an endogenous origin could not be demonstrated or pre-operative nasal colonisation retrieved a strain that was different from the one recovered from the surgical sit

    Development and application of a positive–negative selectable marker system for use in reverse genetics in Plasmodium

    Get PDF
    A limitation of transfection of malaria parasites is the availability of only a low number of positive selectable markers for selection of transformed mutants. This is exacerbated for the rodent parasite Plasmodium berghei as selection of mutants is performed in vivo in laboratory rodents. We here report the development and application of a negative selection system based upon transgenic expression of a bifunctional protein (yFCU) combining yeast cytosine deaminase and uridyl phosphoribosyl transferase (UPRT) activity in P.berghei followed by in vivo selection with the prodrug 5-fluorocytosine (5-FC). The combination of yfcu and a positive selectable marker was used to first achieve positive selection of mutant parasites with a disrupted gene in a conventional manner. Thereafter through negative selection using 5-FC, mutants were selected where the disrupted gene had been restored to its original configuration as a result of the excision of the selectable markers from the genome through homologous recombination. This procedure was carried out for a Plasmodium gene (p48/45) encoding a protein involved in fertilization, the function of which had been previously implied through gene disruption alone. Such reversible recombination can therefore be employed for both the rapid analysis of the phenotype by targeted disruption of a gene and further associate phenotype and function by genotype restoration through the use of a single plasmid and a single positive selectable marker. Furthermore the negative selection system may also be adapted to facilitate other procedures such as ‘Hit and Run’ and ‘vector recycling’ which in principle will allow unlimited manipulation of a single parasite clone. This is the first demonstration of the general use of yFCU in combination with a positive selectable marker in reverse genetics approaches and it should be possible to adapt its use to many other biological systems

    Fermiophobic and other non-minimal neutral Higgs bosons at the LHC

    Get PDF
    The phenomenology of neutral Higgs bosons from non--SUSY, extended Higgs sectors is studied in the context of the LHC, with particular attention given to the case of a fermiophobic Higgs. It is found that enhanced branching ratios to γγ\gamma\gamma and τ+τ−\tau^+\tau^- are possible and can provide clear signatures, while detection of a fermiophobic Higgs will be problematic beyond a mass of 130 GeV.Comment: 16 pages, Latex, 5 figure

    Bodies, technologies and action possibilities: when is an affordance?

    Get PDF
    Borrowed from ecological psychology, the concept of affordances is often said to offer the social study of technology a means of re-framing the question of what is, and what is not, ‘social’ about technological artefacts. The concept, many argue, enables us to chart a safe course between the perils of technological determinism and social constructivism. This article questions the sociological adequacy of the concept as conventionally deployed. Drawing on ethnographic work on the ways technological artefacts engage, and are engaged by, disabled bodies, we propose that the ‘affordances’ of technological objects are not reducible to their material constitution but are inextricably bound up with specific, historically situated modes of engagement and ways of life

    The glutathione biosynthetic pathway of Plasmodium is essential for mosquito transmission

    Get PDF
    1Infection of red blood cells (RBC) subjects the malaria parasite to oxidative stress. Therefore, efficient antioxidant and redox systems are required to prevent damage by reactive oxygen species. Plasmodium spp. have thioredoxin and glutathione (GSH) systems that are thought to play a major role as antioxidants during blood stage infection. In this report, we analyzed a critical component of the GSH biosynthesis pathway using reverse genetics. Plasmodium berghei parasites lacking expression of gamma-glutamylcysteine synthetase (γ-GCS), the rate limiting enzyme in de novo synthesis of GSH, were generated through targeted gene disruption thus demonstrating, quite unexpectedly, that γ-GCS is not essential for blood stage development. Despite a significant reduction in GSH levels, blood stage forms of pbggcs− parasites showed only a defect in growth as compared to wild type. In contrast, a dramatic effect on development of the parasites in the mosquito was observed. Infection of mosquitoes with pbggcs− parasites resulted in reduced numbers of stunted oocysts that did not produce sporozoites. These results have important implications for the design of drugs aiming at interfering with the GSH redox-system in blood stages and demonstrate that de novo synthesis of GSH is pivotal for development of Plasmodium in the mosquito

    Position resolution and particle identification with the ATLAS EM calorimeter

    Full text link
    In the years between 2000 and 2002 several pre-series and series modules of the ATLAS EM barrel and end-cap calorimeter were exposed to electron, photon and pion beams. The performance of the calorimeter with respect to its finely segmented first sampling has been studied. The polar angle resolution has been found to be in the range 50-60 mrad/sqrt(E (GeV)). The neutral pion rejection has been measured to be about 3.5 for 90% photon selection efficiency at pT=50 GeV/c. Electron-pion separation studies have indicated that a pion fake rate of (0.07-0.5)% can be achieved while maintaining 90% electron identification efficiency for energies up to 40 GeV.Comment: 32 pages, 22 figures, to be published in NIM

    Determination of the branching ratios Γ(KL→3π0)/Γ(KL→π+π−π0)\Gamma (K_L \to 3 \pi^0) / \Gamma (K_L \to \pi^+ \pi^- \pi^0) and Γ(KL→3π0)/Γ(KL→πeν)\Gamma (K_L \to 3 \pi^0) / \Gamma (K_L \to \pi e \nu )

    Get PDF
    Improved branching ratios were measured for the KL→3π0K_L \to 3 \pi^0 decay in a neutral beam at the CERN SPS with the NA31 detector: Γ(KL→3π0)/Γ(KL→π+π−π0)=1.611±0.037\Gamma (K_L \to 3 \pi^0) / \Gamma (K_L \to \pi^+ \pi^- \pi^0) = 1.611 \pm 0.037 and Γ(KL→3π0)/Γ(KL→πeν)=0.545±0.010\Gamma (K_L \to 3 \pi^0) / \Gamma (K_L \to \pi e \nu ) = 0.545 \pm 0.010. From the first number an upper limit for ΔI=5/2\Delta I =5/2 and ΔI=7/2\Delta I = 7/2 transitions in neutral kaon decay is derived. Using older results for the Ke3/Kμ\mu 3 fraction, the 3π0\pi^0 branching ratio is found to be Γ(KL→3π0)/Γtot=(0.211±0.003)\Gamma (K_L \to 3 \pi^0 )/ \Gamma_{tot} = (0.211 \pm 0.003), about a factor three more precise than from previous experiments

    Energy Linearity and Resolution of the ATLAS Electromagnetic Barrel Calorimeter in an Electron Test-Beam

    Get PDF
    A module of the ATLAS electromagnetic barrel liquid argon calorimeter was exposed to the CERN electron test-beam at the H8 beam line upgraded for precision momentum measurement. The available energies of the electron beam ranged from 10 to 245 GeV. The electron beam impinged at one point corresponding to a pseudo-rapidity of eta=0.687 and an azimuthal angle of phi=0.28 in the ATLAS coordinate system. A detailed study of several effects biasing the electron energy measurement allowed an energy reconstruction procedure to be developed that ensures a good linearity and a good resolution. Use is made of detailed Monte Carlo simulations based on Geant which describe the longitudinal and transverse shower profiles as well as the energy distributions. For electron energies between 15 GeV and 180 GeV the deviation of the measured incident electron energy over the beam energy is within 0.1%. The systematic uncertainty of the measurement is about 0.1% at low energies and negligible at high energies. The energy resolution is found to be about 10% sqrt(E) for the sampling term and about 0.2% for the local constant term
    • …
    corecore