110 research outputs found

    RAD sequencing resolves fine-scale population structure in a benthic invertebrate: implications for understanding phenotypic plasticity.

    Get PDF
    The field of molecular ecology is transitioning from the use of small panels of classical genetic markers such as microsatellites to much larger panels of single nucleotide polymorphisms (SNPs) generated by approaches like RAD sequencing. However, few empirical studies have directly compared the ability of these methods to resolve population structure. This could have implications for understanding phenotypic plasticity, as many previous studies of natural populations may have lacked the power to detect genetic differences, especially over micro-geographic scales. We therefore compared the ability of microsatellites and RAD sequencing to resolve fine-scale population structure in a commercially important benthic invertebrate by genotyping great scallops (Pecten maximus) from nine populations around Northern Ireland at 13 microsatellites and 10 539 SNPs. The shells were then subjected to morphometric and colour analysis in order to compare patterns of phenotypic and genetic variation. We found that RAD sequencing was superior at resolving population structure, yielding higher Fst values and support for two distinct genetic clusters, whereas only one cluster could be detected in a Bayesian analysis of the microsatellite dataset. Furthermore, appreciable phenotypic variation was observed in size-independent shell shape and coloration, including among localities that could not be distinguished from one another genetically, providing support for the notion that these traits are phenotypically plastic. Taken together, our results suggest that RAD sequencing is a powerful approach for studying population structure and phenotypic plasticity in natural populations

    RAD sequencing resolves fine-scale population structure in a benthic invertebrate: implications for understanding phenotypic plasticity

    Get PDF
    The field of molecular ecology is transitioning from the use of small panels of classical genetic markers such as microsatellites to much larger panels of single nucleotide polymorphisms (SNPs) generated by approaches like RAD sequencing. However, few empirical studies have directly compared the ability of these methods to resolve population structure. This could have implications for understanding phenotypic plasticity, as many previous studies of natural populations may have lacked the power to detect genetic differences, especially over micro-geographic scales. We therefore compared the ability of microsatellites and RAD sequencing to resolve fine-scale population structure in a commercially important benthic invertebrate by genotyping great scallops (Pecten maximus) from nine populations around Northern Ireland at 13 microsatellites and 10 539 SNPs. The shells were then subjected to morphometric and colour analysis in order to compare patterns of phenotypic and genetic variation. We found that RAD sequencing was superior at resolving population structure, yielding higher Fst values and support for two distinct genetic clusters, whereas only one cluster could be detected in a Bayesian analysis of the microsatellite dataset. Furthermore, appreciable phenotypic variation was observed in size-independent shell shape and coloration, including among localities that could not be distinguished from one another genetically, providing support for the notion that these traits are phenotypically plastic. Taken together, our results suggest that RAD sequencing is a powerful approach for studying population structure and phenotypic plasticity in natural populations

    XRCC4 deficiency in human subjects causes a marked neurological phenotype but no overt immunodeficiency

    Get PDF
    Background Nonhomologous end-joining (NHEJ) is the major DNA double-strand break (DSB) repair mechanism in human cells. The final rejoining step requires DNA ligase IV (LIG4) together with the partner proteins X-ray repair cross-complementing protein 4 (XRCC4) and XRCC4-like factor. Patients with mutations in genes encoding LIG4, XRCC4-like factor, or the other NHEJ proteins DNA-dependent protein kinase catalytic subunit and Artemis are DSB repair defective and immunodeficient because of the requirement for NHEJ during V(D)J recombination. Objective We found a patient displaying microcephaly and progressive ataxia but a normal immune response. We sought to determine pathogenic mutations and to describe the molecular pathogenesis of the patient. Methods We performed next-generation exome sequencing. We evaluated the DSB repair activities and V(D)J recombination capacity of the patient's cells, as well as performing a standard blood immunologic characterization. Results We identified causal mutations in the XRCC4 gene. The patient's cells are radiosensitive and display the most severe DSB repair defect we have encountered using patient-derived cell lines. In marked contrast, a V(D)J recombination plasmid assay revealed that the patient's cells did not display the junction abnormalities that are characteristic of other NHEJ-defective cell lines. The mutant protein can interact efficiently with LIG4 and functions normally in in vitro assays and when transiently expressed in vivo. However, the mutation makes the protein unstable, and it undergoes proteasome-mediated degradation. Conclusion Our findings reveal a novel separation of impact phenotype: there is a pronounced DSB repair defect and marked clinical neurological manifestation but no clinical immunodeficiency

    Does Preendoscopy Rockall Score Safely Identify Low Risk Patients following Upper Gastrointestinal Haemorrhage?

    Get PDF
    Objective. To determine if preendoscopy Rockall score (PERS) enables safe outpatient management of New Zealanders with upper gastrointestinal haemorrhage (UGIH). Methods. Retrospective analysis of adults with UGIH over 59 consecutive months. PERS, diagnosis, demographics, need for endoscopic therapy, transfusion or surgery and 30-day mortality and 14-day rebleeding rate, and sensitivity and specificity of PERS for enabling safe discharge preendoscopy were calculated. Results. 424 admissions with UGIH. Median age was 74.3 years (range 19-93 years), with 55.1% being males. 30-day mortality was 4.6% and 14-day rebleeding rate was 6.0%. Intervention was required in 181 (46.6%): blood transfusion (147 : 37.9%), endoscopic intervention (75 : 19.3%), and surgery (8 : 2.1%). 42 (10.8%) had PERS = 0 with intervention required in 15 (35.7%). Females more frequently required intervention, OR 1.73 (CI: 1.12-2.69). PERS did not predict intervention but did predict 30-day mortality: each point increase equated to an increase in mortality of OR 1.46 (CI: 1.11-1.92). Taking NSAIDs/aspirin reduced 30-day mortality, OR 0.22 (CI: 0.08-0.60). Conclusion. PERS identifies 10.8% of those with UGIH as low risk but 35.7% required intervention or died. It has a limited role in assessing these patients and should not be used to identify those suitable for outpatient endoscopy

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    De novo mutations in GRIN1 cause extensive bilateral polymicrogyria

    Get PDF
    Polymicrogyria is a malformation of cortical development. The aetiology of polymicrogyria remains poorly understood. Using whole-exome sequencing we found de novo heterozygous missense GRIN1 mutations in 2 of 57 parent-offspring trios with polymicrogyria. We found nine further de novo missense GRIN1 mutations in additional cortical malformation patients. Shared features in the patients were extensive bilateral polymicrogyria associated with severe developmental delay, postnatal microcephaly, cortical visual impairment and intractable epilepsy. GRIN1 encodes GluN1, the essential subunit of the N-methyl-d-aspartate receptor. The polymicrogyria-associated GRIN1 mutations tended to cluster in the S2 region (part of the ligand-binding domain of GluN1) or the adjacent M3 helix. These regions are rarely mutated in the normal population or in GRIN1 patients without polymicrogyria. Using two-electrode and whole-cell voltage-clamp analysis, we showed that the polymicrogyria-associated GRIN1 mutations significantly alter the in vitro activity of the receptor. Three of the mutations increased agonist potency while one reduced proton inhibition of the receptor. These results are striking because previous GRIN1 mutations have generally caused loss of function, and because N-methyl-d-aspartate receptor agonists have been used for many years to generate animal models of polymicrogyria. Overall, our results expand the phenotypic spectrum associated with GRIN1 mutations and highlight the important role of N-methyl-d-aspartate receptor signalling in the pathogenesis of polymicrogyria
    • …
    corecore