143 research outputs found

    Non-linear effects and Joule heating in I-V curves in manganites

    Full text link
    We study the influence of the Joule effect on the non-linear behavior of the transport I-V curves in polycrystalline samples of the manganite Pr0.8Ca0.2MnO3 by using the crystalline unit cell parameters as an internal thermometer in X-ray and neutron diffraction. We develop a simple analytical model to estimate the temperature profile in the samples. Under the actual experimental conditions we show that the internal temperature gradient or the difference between the temperature of the sample and that of the thermal bath are at the origin of the non-linearity observed in the I-V curves. Consequences on other compounds with colossal magnetoresistance are also discussed.Comment: accepted in Journal of Applied Physic

    Diagnostic challenges in a child with early onset desmoplastic medulloblastoma and homozygous variants in MSH2 and MSH6

    Get PDF
    International audienceConstitutional mismatch repair deficiency (CMMRD) is an autosomal recessively inherited childhood cancer susceptibility syndrome caused by biallelic germline mutations in one of the mismatch repair (MMR

    Nerve Injury Evoked Loss of Latexin Expression in Spinal Cord Neurons Contributes to the Development of Neuropathic Pain

    Get PDF
    Nerve injury leads to sensitization mechanisms in the peripheral and central nervous system which involve transcriptional and post-transcriptional modifications in sensory nerves. To assess protein regulations in the spinal cord after injury of the sciatic nerve in the Spared Nerve Injury model (SNI) we performed a proteomic analysis using 2D-difference gel electrophoresis (DIGE) technology. Among approximately 2300 protein spots separated on each gel we detected 55 significantly regulated proteins after SNI whereof 41 were successfully identified by MALDI-TOF MS. Out of the proteins which were regulated in the DIGE analyses after SNI we focused on the carboxypeptidase A inhibitor latexin because protease dysfunctions contribute to the development of neuropathic pain. Latexin protein expression was reduced after SNI which could be confirmed by Western Blot analysis, quantitative RT-PCR and in-situ hybridisation. The decrease of latexin was associated with an increase of the activity of carboxypeptidase A indicating that the balance between latexin and carboxypeptidase A was impaired in the spinal cord after peripheral nerve injury due to a loss of latexin expression in spinal cord neurons. This may contribute to the development of cold allodynia because normalization of neuronal latexin expression in the spinal cord by AAV-mediated latexin transduction or administration of a small molecule carboxypeptidase A inhibitor significantly reduced acetone-evoked nociceptive behavior after SNI. Our results show the usefulness of proteomics as a screening tool to identify novel mechanisms of nerve injury evoked hypernociception and suggest that carboxypeptidase A inhibition might be useful to reduce cold allodynia

    High prevalence of BRCA1 stop mutation c.4183C>T in the Tyrolean population: implications for genetic testing

    Full text link
    Screening for founder mutations in BRCA1 and BRCA2 has been discussed as a cost-effective testing strategy in certain populations. In this study, comprehensive BRCA1 and BRCA2 testing was performed in a routine diagnostic setting. The prevalence of the BRCA1 stop mutation c.4183C>T, p.(Gln1395Ter), was determined in unselected breast and ovarian cancer patients from different regions in the Tyrol. Cancer registry data were used to evaluate the impact of this mutation on regional cancer incidence. The mutation c.4183C>T was detected in 30.4% of hereditary BRCA1-associated breast and ovarian cancer patients in our cohort. It was also identified in 4.1% of unselected (26% of unselected triple negative) Tyrolean breast cancer patients and 6.8% of unselected ovarian cancer patients from the Lower Inn Valley (LIV) region. Cancer incidences showed a region-specific increase in age-stratified breast and ovarian cancer risk with standardized incidence ratios of 1.23 and 2.13, respectively. We, thus, report a Tyrolean BRCA1 founder mutation that correlates to a local increase in the breast and ovarian cancer risks. On the basis of its high prevalence, we suggest that targeted genetic analysis should be offered to all women with breast or ovarian cancer and ancestry from the LIV region

    Three-Dimensional Maps of All Chromosomes in Human Male Fibroblast Nuclei and Prometaphase Rosettes

    Get PDF
    Studies of higher-order chromatin arrangements are an essential part of ongoing attempts to explore changes in epigenome structure and their functional implications during development and cell differentiation. However, the extent and cell-type-specificity of three-dimensional (3D) chromosome arrangements has remained controversial. In order to overcome technical limitations of previous studies, we have developed tools that allow the quantitative 3D positional mapping of all chromosomes simultaneously. We present unequivocal evidence for a probabilistic 3D order of prometaphase chromosomes, as well as of chromosome territories (CTs) in nuclei of quiescent (G0) and cycling (early S-phase) human diploid fibroblasts (46, XY). Radial distance measurements showed a probabilistic, highly nonrandom correlation with chromosome size: small chromosomes—independently of their gene density—were distributed significantly closer to the center of the nucleus or prometaphase rosette, while large chromosomes were located closer to the nuclear or rosette rim. This arrangement was independently confirmed in both human fibroblast and amniotic fluid cell nuclei. Notably, these cell types exhibit flat-ellipsoidal cell nuclei, in contrast to the spherical nuclei of lymphocytes and several other human cell types, for which we and others previously demonstrated gene-density-correlated radial 3D CT arrangements. Modeling of 3D CT arrangements suggests that cell-type-specific differences in radial CT arrangements are not solely due to geometrical constraints that result from nuclear shape differences. We also found gene-density-correlated arrangements of higher-order chromatin shared by all human cell types studied so far. Chromatin domains, which are gene-poor, form a layer beneath the nuclear envelope, while gene-dense chromatin is enriched in the nuclear interior. We discuss the possible functional implications of this finding

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 6060^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law EγE^{-\gamma} with index γ=2.70±0.02(stat)±0.1(sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25(stat)1.2+1.0(sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO

    Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    Full text link
    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy -- corrected for geometrical effects -- is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO
    corecore