7 research outputs found

    Neonicotinic analogues: Selective antagonists for alpha 4 beta 2 nicotinic acetylcholine receptors

    No full text
    Alzate-Morales, J (Alzate-Morales, Jans) ; Adasme-Carreno, F (Adasme-Carreno, Francisco). Univ Talca, Ctr Bioinformat & Mol Simulat CBSM, Talca, ChileNicotine is an agonist of nicotinic acetylcholine receptors (nAChRs) that has been extensively used as a template for the synthesis of alpha 4 beta 2-preferring nAChRs. Here, we used the N-methyl-pyrrolidine moiety of nicotine to design and synthesise novel alpha 4 beta 2-preferring neonicotinic ligands. We increased the distance between the basic nitrogen and aromatic group of nicotine by introducing an ester functionality that also mimics acetylcholine (Fig. 2). Additionally, we introduced a benzyloxy group linked to the benzoyl moiety. Although the neonicotinic compounds fully inhibited binding of both [alpha-I-125]bungarotoxin to human alpha 7 nAChRs and [H-3]cytisine to human alpha 4 beta 2 nAChRs, they were markedly more potent at displacing radioligand binding to human alpha 4 beta 2 nAChRs than to alpha 7 nAChRs. Functional assays showed that the neonicotinic compounds behave as antagonists at alpha 4 beta 2 and alpha 4 beta 2 alpha 5 nAChRs. Substitutions on the aromatic ring of the compounds produced compounds that displayed marked selectivity for alpha 4 beta 2 or alpha 4 beta 2 alpha 5 nAChRs. Docking of the compounds on homology models of the agonist binding site at the alpha 4/beta 2 subunit interfaces of alpha 4 beta 2 nAChRs suggested the compounds inhibit function of this nAChR type by binding the agonist binding site. (C) 2013 Elsevier Ltd. All rights reserved

    β-Ionone as putative semiochemical suggested by ligand binding on an odorant-binding protein of Hylamorpha elegans and electroantennographic recordings

    No full text
    Currently, odorant-binding proteins (OBPs) are considered the first filter for olfactory information for insects and constitute an interesting target for pest control. Thus, an OBP (HeleOBP) from the scarab beetle Hylamorpha elegans (Burmeister) was identified, and ligand-binding assays based on fluorescence and in silico approaches were performed, followed by a simulated binding assay. Fluorescence binding assays showed slight binding for most of the ligands tested, including host-plant volatiles. A high binding affinity was obtained for -ionone, a scarab beetle-related compound. However, the binding of its analogue -ionone was weaker, although it is still considered good. On the other hand, through a three-dimensional model of HeleOBP constructed by homology, molecular docking was carried out with 29 related ligands to the beetle. Results expressed as free binding energy and fit quality (FQ) indicated strong interactions of sesquiterpenes and terpenoids (- and -ionone) with HeleOBP as well as some aromatic compounds. Residues such as His102, Tyr105 and Tyr113 seemed to participate in the interactions previously mentioned. Both in silico scores supported the experimental affinity for the strongest ligands. Therefore, the activity of -ionone, -ionone and 2-phenyl acetaldehyde at antennal level was studied using electroantenography (EAG). Results showed that the three ligands are electrophysiologically active. However, an aliquot of -ionone (represented by 3.0ng) elicited stronger EAG responses in antennae of males than of females. Finally, the role of these ligands as potential semiochemicals for H.elegans is discusse
    corecore