84 research outputs found

    Combined changes in Wnt signalling response and contact inhibition induce altered proliferation in radiation treated intestinal crypts

    Get PDF
    Curative intervention is possible if colorectal cancer is identified early, underscoring the need to detect the earliest stages of malignant transformation. A candidate biomarker is the expanded proliferative zone observed in crypts before adenoma formation, also found in irradiated crypts. However, the underlying driving mechanism for this is not known. Wnt signaling is a key regulator of proliferation, and elevated Wnt signaling is implicated in cancer. Nonetheless, how cells differentiate Wnt signals of varying strengths is not understood. We use computational modeling to compare alternative hypotheses about how Wnt signaling and contact inhibition affect proliferation. Direct comparison of simulations with published experimental data revealed that the model that best reproduces proliferation patterns in normal crypts stipulates that proliferative fate and cell cycle duration are set by the Wnt stimulus experienced at birth. The model also showed that the broadened proliferation zone induced by tumorigenic radiation can be attributed to cells responding to lower Wnt concentrations and dividing at smaller volumes. Application of the model to data from irradiated crypts after an extended recovery period permitted deductions about the extent of the initial insult. Application of computational modeling to experimental data revealed how mechanisms that control cell dynamics are altered at the earliest stages of carcinogenesis

    Allele specific repair of splicing mutations in cystic fibrosis through AsCas12a genome editing.

    Get PDF
    Funder: Fondazione Fibrosi Cistica - FFC#1/2017Cystic fibrosis (CF) is an autosomal recessive disease caused by mutations in the CFTR gene. The 3272-26A>G and 3849+10kbC>T CFTR mutations alter the correct splicing of the CFTR gene, generating new acceptor and donor splice sites respectively. Here we develop a genome editing approach to permanently correct these genetic defects, using a single crRNA and the Acidaminococcus sp. BV3L6, AsCas12a. This genetic repair strategy is highly precise, showing very strong discrimination between the wild-type and mutant sequence and a complete absence of detectable off-targets. The efficacy of this gene correction strategy is verified in intestinal organoids and airway epithelial cells derived from CF patients carrying the 3272-26A>G or 3849+10kbC>T mutations, showing efficient repair and complete functional recovery of the CFTR channel. These results demonstrate that allele-specific genome editing with AsCas12a can correct aberrant CFTR splicing mutations, paving the way for a permanent splicing correction in genetic diseases

    Paneth cell - rich regions separated by a cluster of Lgr5+ cells initiate crypt fission in the intestinal stem cell niche

    Get PDF
    The crypts of the intestinal epithelium house the stem cells that ensure the continual renewal of the epithelial cells that line the intestinal tract. Crypt number increases by a process called crypt fission, the division of a single crypt into two daughter crypts. Fission drives normal tissue growth and maintenance. Correspondingly, it becomes less frequent in adulthood. Importantly, fission is reactivated to drive adenoma growth. The mechanisms governing fission are poorly understood. However, only by knowing how normal fission operates can cancer-associated changes be elucidated. We studied normal fission in tissue in three dimensions using high-resolution imaging and used intestinal organoids to identify underlying mechanisms. We discovered that both the number and relative position of Paneth cells and Lgr5+ cells are important for fission. Furthermore, the higher stiffness and increased adhesion of Paneth cells are involved in determining the site of fission. Formation of a cluster of Lgr5+ cells between at least two Paneth-cell-rich domains establishes the site for the upward invagination that initiates fission

    AQP5 enriches for stem cells and cancer origins in the distal stomach

    Get PDF
    LGR5 marks resident adult epithelial stem cells at the gland base in the mouse pyloric stomach1, but the identity of the equivalent human stem cell population remains unknown owing to a lack of surface markers that facilitate its prospective isolation and validation. In mouse models of intestinal cancer, LGR5+ intestinal stem cells are major sources of cancer following hyperactivation of the WNT pathway2. However, the contribution of pyloric LGR5+ stem cells to gastric cancer following dysregulation of the WNT pathway—a frequent event in gastric cancer in humans3—is unknown. Here we use comparative profiling of LGR5+ stem cell populations along the mouse gastrointestinal tract to identify, and then functionally validate, the membrane protein AQP5 as a marker that enriches for mouse and human adult pyloric stem cells. We show that stem cells within the AQP5+ compartment are a source of WNT-driven, invasive gastric cancer in vivo, using newly generated Aqp5-creERT2 mouse models. Additionally, tumour-resident AQP5+ cells can selectively initiate organoid growth in vitro, which indicates that this population contains potential cancer stem cells. In humans, AQP5 is frequently expressed in primary intestinal and diffuse subtypes of gastric cancer (and in metastases of these subtypes), and often displays altered cellular localization compared with healthy tissue. These newly identified markers and mouse models will be an invaluable resource for deciphering the early formation of gastric cancer, and for isolating and characterizing human-stomach stem cells as a prerequisite for harnessing the regenerative-medicine potential of these cells in the clinic

    Guided self-organization and cortical plate formation in human brain organoids.

    Get PDF
    Three-dimensional cell culture models have either relied on the self-organizing properties of mammalian cells or used bioengineered constructs to arrange cells in an organ-like configuration. While self-organizing organoids excel at recapitulating early developmental events, bioengineered constructs reproducibly generate desired tissue architectures. Here, we combine these two approaches to reproducibly generate human forebrain tissue while maintaining its self-organizing capacity. We use poly(lactide-co-glycolide) copolymer (PLGA) fiber microfilaments as a floating scaffold to generate elongated embryoid bodies. Microfilament-engineered cerebral organoids (enCORs) display enhanced neuroectoderm formation and improved cortical development. Furthermore, reconstitution of the basement membrane leads to characteristic cortical tissue architecture, including formation of a polarized cortical plate and radial units. Thus, enCORs model the distinctive radial organization of the cerebral cortex and allow for the study of neuronal migration. Our data demonstrate that combining 3D cell culture with bioengineering can increase reproducibility and improve tissue architecture

    Impact of cell types and culture methods on the functionality of in vitro liver systems - A review of cell systems for hepatotoxicity assessment.

    Get PDF
    Xenobiotic safety assessment is an area that impacts a multitude of different industry sectors such as medicinal drugs, agrochemicals, industrial chemicals, cosmetics and environmental contaminants. As such there are a number of well-developed in vitro, in vivo and in silico approaches to evaluate their properties and potential impact on the environment and to humans. Additionally, there is the continual investment in multidisciplinary scientists to explore non-animal surrogate technologies to predict specific toxicological outcomes and to improve our understanding of the biological processes regarding the toxic potential of xenobiotics. Here we provide a concise, critical evaluation of a number of in vitro systems utilised to assess the hepatotoxic potential of xenobiotics
    • …
    corecore