29 research outputs found
Engineering E. coli cell surface in order to develop a one-step purification method for recombinant proteins
Sortases are enzymes mostly found in Gram-positive bacteria which cleave proteins site-specifically. This feature makes them a promising tool in molecular biology and biotechnology. In this study, using bacterial surface display of recombinant proteins and ability of sortase A in site-specifically cleavage of the amino acid sequences, a novel method for one-step purification of recombinant proteins was developed. Using computational program tools, a chimeric protein containing a metallothionein (mt) and chitin binding domain (ChBD) was attached to the C-terminal domain of the truncated outer membrane protein A (Lpp�-ompA) using sortase recognition site (amino acid residues: LPQTG) as a separator. The structure of the chimeric protein was simulated using molecular dynamics to determine if the LPQTG motif is accessible to the sortase active site. The designed chimeric protein was expressed and purified. The purified chimeric protein was also displayed on the surface of E. coli cells. Both purified chimeric protein and the E. coli cells displaying Lpp�-ompA-mt-ChBD carrier protein were then treated with sortase to evaluate the efficiency of sortase-mediated cleavage of purified chimeric protein as well as surface displayed-chimeric protein. It is shown that mt-ChBD protein was successfully cleaved and dissociated from Lpp�-ompA carrier and released into the medium after treatment with sortase in both recombinant protein and surface displayed-chimeric protein. The experimental results confirmed the molecular dynamics analysis results. The presented method could be regarded as a novel strategy for one step expression and purification of recombinant proteins. © 2018, The Author(s)
Engineering E. coli cell surface in order to develop a one-step purification method for recombinant proteins
Abstract Sortases are enzymes mostly found in Gram-positive bacteria which cleave proteins site-specifically. This feature makes them a promising tool in molecular biology and biotechnology. In this study, using bacterial surface display of recombinant proteins and ability of sortase A in site-specifically cleavage of the amino acid sequences, a novel method for one-step purification of recombinant proteins was developed. Using computational program tools, a chimeric protein containing a metallothionein (mt) and chitin binding domain (ChBD) was attached to the C-terminal domain of the truncated outer membrane protein A (Lpp′-ompA) using sortase recognition site (amino acid residues: LPQTG) as a separator. The structure of the chimeric protein was simulated using molecular dynamics to determine if the LPQTG motif is accessible to the sortase active site. The designed chimeric protein was expressed and purified. The purified chimeric protein was also displayed on the surface of E. coli cells. Both purified chimeric protein and the E. coli cells displaying Lpp′-ompA-mt-ChBD carrier protein were then treated with sortase to evaluate the efficiency of sortase-mediated cleavage of purified chimeric protein as well as surface displayed-chimeric protein. It is shown that mt-ChBD protein was successfully cleaved and dissociated from Lpp′-ompA carrier and released into the medium after treatment with sortase in both recombinant protein and surface displayed-chimeric protein. The experimental results confirmed the molecular dynamics analysis results. The presented method could be regarded as a novel strategy for one step expression and purification of recombinant proteins
Functional analysis of the sortase YhcS in Bacillus subtilis
Sortases of Gram-positive bacteria catalyze the covalent C-terminal anchoring of proteins to the cell wall. Bacillus subtilis, a well-known host organism for protein production, contains two putative sortases named YhcS and YwpE. The present studies were aimed at investigating the possible sortase function of these proteins in B. subtilis. Proteomics analyses revealed that sortase-mutant cells released elevated levels of the putative sortase substrate YfkN into the culture medium upon phosphate starvation. The results indicate that YfkN required sortase activity of YhcS for retention in the cell wall. To analyze sortase function in more detail, we focused attention on the potential sortase substrate YhcR, which is co-expressed with the sortase YhcS. Our results showed that the sortase recognition and cell-wall-anchoring motif of YhcR is functional when fused to the Bacillus pumilus chitinase ChiS, a readily detectable reporter protein that is normally secreted. The ChiS fusion protein is displayed at the cell wall surface when YhcS is co-expressed. In the absence of YhcS, or when no cell-wall-anchoring motif is fused to ChiS, the ChiS accumulates predominately in the culture medium. Taken together, these novel findings show that B. subtilis has a functional sortase for anchoring proteins to the cell wall