9 research outputs found

    Schizophrenia-associated somatic copy-number variants from 12,834 cases reveal recurrent NRXN1 and ABCB11 disruptions

    Get PDF
    While germline copy-number variants (CNVs) contribute to schizophrenia (SCZ) risk, the contribution of somatic CNVs (sCNVs)—present in some but not all cells—remains unknown. We identified sCNVs using blood-derived genotype arrays from 12,834 SCZ cases and 11,648 controls, filtering sCNVs at loci recurrently mutated in clonal blood disorders. Likely early-developmental sCNVs were more common in cases (0.91%) than controls (0.51%, p = 2.68e−4), with recurrent somatic deletions of exons 1–5 of the NRXN1 gene in five SCZ cases. Hi-C maps revealed ectopic, allele-specific loops forming between a potential cryptic promoter and non-coding cis-regulatory elements upon 5′ deletions in NRXN1. We also observed recurrent intragenic deletions of ABCB11, encoding a transporter implicated in anti-psychotic response, in five treatment-resistant SCZ cases and showed that ABCB11 is specifically enriched in neurons forming mesocortical and mesolimbic dopaminergic projections. Our results indicate potential roles of sCNVs in SCZ risk

    Transposable Elements in Neural Progenitor Cells

    No full text
    More than 90% of DNA does not code for proteins and for a long time these sequences were referred to as “junk DNA” due to their unknown purpose. With the advent of new technologies it is now known, that the non-coding part of the genome is of great importance for regulating gene expression and is therefore indispensable. Transposable elements comprise about 50% of the genome and co-exist as symbionts regulated by epigenetic mechanisms - a highly defined machinery that controls gene expression and is mandatory for a proper development and maintenance of an organism. Although transposable elements are associated with diseases, their role in fine-tuning the host gene expression becomes more and more evident, which seems to justify the positive selection during evolution. A transposable element called Line-1 was found to be active in neural progenitor cells and in the brain. Several studies report Line-1 transcription and frequent retrotransposition during normal brain development, with further evidence that Line-1 induced retrotransposition can influence neuronal gene expression. Today, there is few published data focusing on epigenetic regulation of transposable elements in neural progenitor cells. In this thesis, I identify TRIM28 as key regulator of certain groups of transposable elements in mouse and human neural progenitor cells. This feature is unique compared to other somatic tissues, where DNA-methylation is prevalent. Here I demonstrate, that transposable elements MMERVK10C and IAP1 in mouse neural progenitor cells are repressed by the establishment of H3K9me3-associated heterochromatin. De-repressed MMERVK10C and IAP1 furthermore activate nearby genes and generate long non-coding RNAs. Homozygous TRIM28 knockout is lethal, while mice with mono-allelic TRIM28 expression are characterised with a distinct behavioural phenotype. Moreover we are also able to show that TRIM28 is regulating a fraction of young Alu-elements in human neural progenitor cells, which is not the case in human embryonic stem cells. Furthermore, we report that transcribed Alu-elements influence gene expression of close-by genes. Studying pluripotent cells revealed that TRIM28 modulates transposable elements in mouse embryonic stem cells. Activation of transposable elements upon TRIM28 depletion induces changes in gene expression of close-by genes and causes alteration of the repressive chromatin mark H3K9me3 at transposable element loci. Upregulated genes were shown to have bivalent promoters, characterised by H3K4me3 and H3K27me3 and lay close to H3K9me3 regulated transposable elements. These findings in mouse embryonic stem cells are highly relevant for the interpretation of my studies in neural progenitor cells. Taken together, this thesis demonstrates that the regulation of transposable elements in mouse and human neural progenitor cells is distinct compared to previous reports regarding somatic tissues. These results provide novel insights into why the brain has developed into such a complex organ with so many different cell types

    miRNAs in brain development.

    No full text
    MicroRNAs (miRNAs) are small, non-coding RNAs that negatively regulate gene expression at the post-transcriptional level. In the brain, a large number of miRNAs are expressed and there is a growing body of evidence demonstrating that miRNAs are essential for brain development and neuronal function. Conditional knockout studies of the core components in the miRNA biogenesis pathway, such as Dicer and DGCR8, have demonstrated a crucial role for miRNAs during the development of the central nervous system. Furthermore, mice deleted for specific miRNAs and miRNA-clusters demonstrate diverse functional roles for different miRNAs during the development of different brain structures. miRNAs have been proposed to regulate cellular functions such as differentiation, proliferation and fate-determination of neural progenitors. In this review we summarise the findings from recent studies that highlight the importance of miRNAs in brain development with a focus on the mouse model. We also discuss the technical limitations of current miRNA studies that still limit our understanding of this family of non-coding RNAs and propose the use of novel and refined technologies that are needed in order to fully determine the impact of specific miRNAs in brain development

    TRIM28 Controls a Gene Regulatory Network Based on Endogenous Retroviruses in Human Neural Progenitor Cells

    No full text
    Endogenous retroviruses (ERVs), which make up 8% of the human genome, have been proposed to participate in the control of gene regulatory networks. In this study, we find a region- and developmental stage-specific expression pattern of ERVs in the developing human brain, which is linked to a transcriptional network based on ERVs. We demonstrate that almost 10,000, primarily primate-specific, ERVs act as docking platforms for the co-repressor protein TRIM28 in human neural progenitor cells, which results in the establishment of local heterochromatin. Thereby, TRIM28 represses ERVs and consequently regulates the expression of neighboring genes. These results uncover a gene regulatory network based on ERVs that participates in control of gene expression of protein-coding transcripts important for brain development

    Genomic data resources of the Brain Somatic Mosaicism Network for neuropsychiatric diseases

    No full text
    Abstract Somatic mosaicism is defined as an occurrence of two or more populations of cells having genomic sequences differing at given loci in an individual who is derived from a single zygote. It is a characteristic of multicellular organisms that plays a crucial role in normal development and disease. To study the nature and extent of somatic mosaicism in autism spectrum disorder, bipolar disorder, focal cortical dysplasia, schizophrenia, and Tourette syndrome, a multi-institutional consortium called the Brain Somatic Mosaicism Network (BSMN) was formed through the National Institute of Mental Health (NIMH). In addition to genomic data of affected and neurotypical brains, the BSMN also developed and validated a best practices somatic single nucleotide variant calling workflow through the analysis of reference brain tissue. These resources, which include >400 terabytes of data from 1087 subjects, are now available to the research community via the NIMH Data Archive (NDA) and are described here

    Comprehensive identification of somatic nucleotide variants in human brain tissue

    Get PDF
    Background: Post-zygotic mutations incurred during DNA replication, DNA repair, and other cellular processes lead to somatic mosaicism. Somatic mosaicism is an established cause of various diseases, including cancers. However, detecting mosaic variants in DNA from non-cancerous somatic tissues poses significant challenges, particularly if the variants only are present in a small fraction of cells. Results: Here, the Brain Somatic Mosaicism Network conducts a coordinated, multi-institutional study to examine the ability of existing methods to detect simulated somatic single-nucleotide variants (SNVs) in DNA mixing experiments, generate multiple replicates of whole-genome sequencing data from the dorsolateral prefrontal cortex, other brain regions, dura mater, and dural fibroblasts of a single neurotypical individual, devise strategies to discover somatic SNVs, and apply various approaches to validate somatic SNVs. These efforts lead to the identification of 43 bona fide somatic SNVs that range in variant allele fractions from ~ 0.005 to ~ 0.28. Guided by these results, we devise best practices for calling mosaic SNVs from 250× whole-genome sequencing data in the accessible portion of the human genome that achieve 90% specificity and sensitivity. Finally, we demonstrate that analysis of multiple bulk DNA samples from a single individual allows the reconstruction of early developmental cell lineage trees. Conclusions: This study provides a unified set of best practices to detect somatic SNVs in non-cancerous tissues. The data and methods are freely available to the scientific community and should serve as a guide to assess the contributions of somatic SNVs to neuropsychiatric diseases

    Schizophrenia-associated somatic copy-number variants from 12,834 cases reveal recurrent NRXN1 and ABCB11 disruptions

    No full text
    corecore