1,093 research outputs found

    Product policy in the steel industry under the impact of competitive materials

    Full text link
    Thesis (M.B.A.)--Boston Universit

    Electron Weibel instability induced magnetic fields in optical-field ionized plasmas

    Full text link
    Generation and amplification of magnetic fields in plasmas is a long-standing topic that is of great interest to both plasma and space physics. The electron Weibel instability is a well-known mechanism responsible for self-generating magnetic fields in plasmas with temperature anisotropy and has been extensively investigated in both theory and simulations, yet experimental verification of this instability has been challenging. Recently, we demonstrated a new experimental platform that enables the controlled initialization of highly nonthermal and/or anisotropic plasma electron velocity distributions via optical-field ionization. Using an external electron probe bunch from a linear accelerator, the onset, saturation and decay of the self-generated magnetic fields due to electron Weibel instability were measured for the first time to our knowledge. In this paper, we will first present experimental results on time-resolved measurements of the Weibel magnetic fields in non-relativistic plasmas produced by Ti:Sapphire laser pulses (0.8 μm\mu m) and then discuss the feasibility of extending the study to quasi-relativistic regime by using intense CO2\rm CO_2 (e.g., 9.2 μm\mu m) lasers to produce much hotter plasmas.Comment: 22 pages, 10 figure

    Is soluble protein mineralisation and protease activity in soil regulated by supply or demand?

    Get PDF
    Protein represents a major input of organic matter to soil and is an important source of carbon (C) and nitrogen (N) for microorganisms. Therefore, determining which soil properties influence protein mineralisation in soil is key to understanding and modelling soil C and N cycling. However, the effect of different soil properties on protein mineralisation, and especially the interactions between soil properties, are poorly understood. We investigated how topsoil and subsoil properties affect protein mineralisation along a grassland altitudinal (catena) sequence that contained a gradient in soil type and primary productivity. We devised a schematic diagram to test the key edaphic factors that may influence protein mineralisation in soil (e.g. pH, microbial biomass, inorganic and organic N availability, enzyme activity and sorption). We then measured the mineralisation rate of 14C-labelled soluble plant-derived protein and amino acids in soil over a two-month period. Correlation analysis was used to determine the associations between rates of protein mineralisation and soil properties. Contrary to expectation, we found that protein mineralisation rate was nearly as fast as for amino acid turnover. We ascribe this rapid protein turnover to the low levels of protein used here, its soluble nature, a high degree of functional redundancy in the microbial community and microbial enzyme adaptation to their ecological niche. Unlike other key soil N processes (e.g. nitrification, denitrification), protease activity was not regulated by a small range of factors, but rather appeared to be affected by a wide range of interacting factors whose importance was dependent on altitude and soil depth [e.g. above-ground net primary productivity (NPP), soil pH, nitrate, cation exchange capacity (CEC), C:N ratio]. Based on our results, we hypothesise that differences in soil N cycling and the generation of ammonium are more related to the rate of protein supply rather than limitations in protease activity and protein turnover per se

    Owning an overweight or underweight body: distinguishing the physical, experienced and virtual body

    Get PDF
    Our bodies are the most intimately familiar objects we encounter in our perceptual environment. Virtual reality provides a unique method to allow us to experience having a very different body from our own, thereby providing a valuable method to explore the plasticity of body representation. In this paper, we show that women can experience ownership over a whole virtual body that is considerably smaller or larger than their physical body. In order to gain a better understanding of the mechanisms underlying body ownership, we use an embodiment questionnaire, and introduce two new behavioral response measures: an affordance estimation task (indirect measure of body size) and a body size estimation task (direct measure of body size). Interestingly, after viewing the virtual body from first person perspective, both the affordance and the body size estimation tasks indicate a change in the perception of the size of the participant’s experienced body. The change is biased by the size of the virtual body (overweight or underweight). Another novel aspect of our study is that we distinguish between the physical, experienced and virtual bodies, by asking participants to provide affordance and body size estimations for each of the three bodies separately. This methodological point is important for virtual reality experiments investigating body ownership of a virtual body, because it offers a better understanding of which cues (e.g. visual, proprioceptive, memory, or a combination thereof) influence body perception, and whether the impact of these cues can vary between different setups

    Mapping the self-generated magnetic fields due to thermal Weibel instability

    Full text link
    Weibel-type instability can self-generate and amplify magnetic fields in both space and laboratory plasmas with temperature anisotropy. The electron Weibel instability has generally proven more challenging to measure than its ion counterpart owing to the much smaller inertia of electrons, resulting in a faster growth rate and smaller characteristic wavelength. Here, we have probed the evolution of the two-dimensional distribution of the magnetic field components and the current density due to electron Weibel instability, in CO2\rm CO_2-ionized hydrogen gas (plasma) with picosecond resolution using a relativistic electron beam. We find that the wavenumber spectra of the magnetic fields are initially broad but eventually shrink to a narrow spectrum representing the dominant quasi-single mode. The measured kk-resolved growth rates of the instability validate kinetic theory. Concurrently, self-organization of microscopic plasma currents is observed to amplify the current modulation magnitude that converts up to ∼1%\sim 1\% of the plasma thermal energy into magnetic energy.Comment: 24 pages, 4 figure
    • …
    corecore