16 research outputs found

    Aquatic food security:insights into challenges and solutions from an analysis of interactions between fisheries, aquaculture, food safety, human health, fish and human welfare, economy and environment

    Get PDF
    Fisheries and aquaculture production, imports, exports and equitability of distribution determine the supply of aquatic food to people. Aquatic food security is achieved when a food supply is sufficient, safe, sustainable, shockproof and sound: sufficient, to meet needs and preferences of people; safe, to provide nutritional benefit while posing minimal health risks; sustainable, to provide food now and for future generations; shock-proof, to provide resilience to shocks in production systems and supply chains; and sound, to meet legal and ethical standards for welfare of animals, people and environment. Here, we present an integrated assessment of these elements of the aquatic food system in the United Kingdom, a system linked to dynamic global networks of producers, processors and markets. Our assessment addresses sufficiency of supply from aquaculture, fisheries and trade; safety of supply given biological, chemical and radiation hazards; social, economic and environmental sustainability of production systems and supply chains; system resilience to social, economic and environmental shocks; welfare of fish, people and environment; and the authenticity of food. Conventionally, these aspects of the food system are not assessed collectively, so information supporting our assessment is widely dispersed. Our assessment reveals trade-offs and challenges in the food system that are easily overlooked in sectoral analyses of fisheries, aquaculture, health, medicine, human and fish welfare, safety and environment. We highlight potential benefits of an integrated, systematic and ongoing process to assess security of the aquatic food system and to predict impacts of social, economic and environmental change on food supply and demand

    Use of lumpfish for sea-lice control in salmon farming: challenges and opportunities

    Get PDF
    Efficient sea-lice control remains one of the most important challenges for the salmon farming industry. The use of wrasse (Labridae) as cleaner fish offers an alternative to medicines for sea-lice control, but wrasse tend to become inactive in winter. Lumpfish (Cyclopterus lumpus) continue to feed on sea-lice at low temperatures, and commercial production has escalated from thousands of fish in 2010 to well over 30 million juveniles deployed in 2016. However, production still relies on the capture of wild broodstock, which may not be sustainable. To meet global industry needs, lumpfish production needs to increase to reach c. 50 million fish annually and this can only come from aquaculture. We review current production methods and the use of lumpfish in sea cages and identify some of the main challenges and bottlenecks facing lumpfish intensification. Our gap analysis indicates that the areas in most need of research include better control of maturation for year-round production; formulation of appropriate diets; artificial selection of elite lines with desirable traits; and development of vaccines for certified, disease-free juvenile production. The welfare of farmed lumpfish also needs to be better quantified, and more information is needed on optimal densities and tank design. Finally, the risk of farmed lumpfish escaping from net pens needs to be critically assessed, and we argue that it might be beneficial to recover cleaner fish from salmon cages after the production cycle, perhaps using them as broodstock, for export to the Asian food markets or for the production of animal feeds
    corecore