100 research outputs found

    Differential effects of curcumin on vasoactive factors in the diabetic rat heart

    Get PDF
    BACKGROUND: Increased oxidative stress has been associated with the pathogenesis of chronic diabetic complications, including cardiomyopathy. Recent studies indicate that curcumin, a potent antioxidant, may be beneficial in preventing diabetes-induced oxidative stress and subsequent secondary complications. We have investigated the effects of curcumin on the nitric oxide (NO) pathway in cardiac tissues and cultured cells. METHODS: Streptozotocin-induced diabetic rats were treated with curcumin for a period of one month. Heart tissues were then analyzed for endothelial NO synthase (eNOS) and inducible NO synthase (iNOS) mRNA expression. Oxidative protein and DNA damage were assessed by immunohistochemical analysis of nitrotyrosine and 8-hydroxy-2'-deoxyguanosine (8-OHdG). Heart tissues were further subjected to endothelin-1 (ET-1) mRNA expression. In order to further characterize the effects of curcumin, we assayed microvascular endothelial cells (MVECs). Cultured MVECs, exposed either to glucose or glucose and varying concentrations of curcumin, were assessed for alterations of NOS expression and activation of nuclear factor-κB (NF-κB) and activating protein-1 (AP-1). Oxidative stress and ET-1 expression levels were also assayed. RESULTS: Our results indicate that one month of diabetes causes an upregulation of both eNOS and iNOS mRNA levels, and nitrotyrosine and 8-OHdG immunoreactivity in the heart. Treatment of diabetic rats with curcumin reduced eNOS and iNOS levels in association with reduced oxidative DNA and protein damage. Interestingly, curcumin further increased vasoconstrictor ET-1 in the heart. Exposure of MVECs to high glucose increased both eNOS and iNOS levels and oxidative stress. Curcumin prevented NOS alteration and oxidative stress in a dose-dependent manner which was mediated by nuclear factor-κB and activating protein-1. Exposure to curcumin also increased ET-1 levels in the MVECs. CONCLUSION: Our studies indicate the differential effects of curcumin in vasoactive factor expression in the heart and indicate the importance of tissue microenvironment in the treatment of diabetic complications

    Wide-awake Anesthesia No Tourniquet Trapeziometacarpal Joint Prosthesis Implantation.

    Get PDF
    Wide awake local anesthesia no tourniquet (WALANT) hand surgery is a rapidly growing in popularity. WALANT has been used by hand surgeons when operating on bones, tendons, ligaments, nerve entrapments. We offer a case report of the first case in the literature describing WALANT technique when performing trapeziometacarpal joint arthroplasty with prosthesis implantation. We offer technical points on how to perform this procedure and the advantages that are associated with using WALANT for prosthesis arthroplasty

    Interplay of oxidative, nitrosative/nitrative stress, inflammation, cell death and autophagy in diabetic cardiomyopathy

    Get PDF
    Diabetes is a recognized risk factor for cardiovascular diseases and heart failure. Diabetic cardiovascular dysfunction also underscores the development of diabetic retinopathy, nephropathy and neuropathy. Despite the broad availability of antidiabetic therapy, glycaemic control still remains a major challenge in the management of diabetic patients. Hyperglycaemia triggers formation of advanced glycosylation end products(AGEs), activates protein kinase C, enhances polyol pathway, glucose autoxidation, which coupled with elevated levels of free fatty acids, and leptin have been implicated in increased generation of superoxide anion by mitochondria, NADPH oxidases and xanthine oxidoreductase in diabetic vasculature and myocardium. Superoxide anion interacts with nitric oxide forming the potent toxin peroxynitrite via diffusion limited reaction, which in concert with other oxidants triggers activation of stress kinases, endoplasmic reticulum stress, mitochondrial and poly(ADP-ribose) polymerase 1-dependent cell death, dysregulates autophagy/mitophagy, inactivates key proteins involved in myocardial calcium handling/contractility and antioxidant defense, activates matrix metalloproteinases and redox-dependent pro-inflammatory transcription factors (e.g. nuclear factor kappaB) promoting inflammation, AGEs formation, eventually culminating in myocardial dysfunction, remodeling and heart failure. Understanding the complex interplay of oxidative/nitrosative stress with pro-inflammatory, metabolic and cell death pathways is critical to devise novel targeted therapies for diabetic cardiomyopathy, which will be overviewed in this brief synopsis. This article is part of a Special Issue entitled: Autophagy and protein quality control in cardiometabolic diseases

    Heme Oxygenase-1 Accelerates Cutaneous Wound Healing in Mice

    Get PDF
    Heme oxygenase-1 (HO-1), a cytoprotective, pro-angiogenic and anti-inflammatory enzyme, is strongly induced in injured tissues. Our aim was to clarify its role in cutaneous wound healing. In wild type mice, maximal expression of HO-1 in the skin was observed on the 2nd and 3rd days after wounding. Inhibition of HO-1 by tin protoporphyrin-IX resulted in retardation of wound closure. Healing was also delayed in HO-1 deficient mice, where lack of HO-1 could lead to complete suppression of reepithelialization and to formation of extensive skin lesions, accompanied by impaired neovascularization. Experiments performed in transgenic mice bearing HO-1 under control of keratin 14 promoter showed that increased level of HO-1 in keratinocytes is enough to improve the neovascularization and hasten the closure of wounds. Importantly, induction of HO-1 in wounded skin was relatively weak and delayed in diabetic (db/db) mice, in which also angiogenesis and wound closure were impaired. In such animals local delivery of HO-1 transgene using adenoviral vectors accelerated the wound healing and increased the vascularization. In summary, induction of HO-1 is necessary for efficient wound closure and neovascularization. Impaired wound healing in diabetic mice may be associated with delayed HO-1 upregulation and can be improved by HO-1 gene transfer

    Repair of a Large, Full-Thickness Defect of the Lower Lip Under Local Anesthesia

    No full text

    Transcriptome Analysis Reveals a Critical Role of CHS7 and CHS8 Genes for Isoflavonoid Synthesis in Soybean Seeds

    No full text
    We have used cDNA microarray analysis to examine changes in gene expression during embryo development in soybean (Glycine max) and to compare gene expression profiles of two soybean cultivars that differ in seed isoflavonoid content. The analysis identified 5,910 genes that were differentially expressed in both soybean cultivars grown at two different locations for two consecutive years in one of the five different stages of embryo development. An ANOVA analysis with P value < 0.05 and < 0.01 indicated that gene expression changes due to environmental factors are greater than those due to cultivar differences. Most changes in gene expression occurred at the stages when the embryos were at 30 or 70 d after pollination. A significantly larger fraction of genes (48.5%) was expressed throughout the development and showed little or no change in expression. Transcript accumulation for genes related to the biosynthesis of storage components in soybean embryos showed several unique temporal expressions. Expression patterns of several genes involved in isoflavonoid biosynthesis, such as Phenylalanine Ammonia-Lyase, Chalcone Synthase (CHS) 7, CHS8, and Isoflavone Synthase2, were higher at 70 d after pollination in both the cultivars. Thus, expression of these genes coincides with the onset of accumulation of isoflavonoids in the embryos. A comparative analysis of genes involved in isoflavonoid biosynthesis in RCAT Angora (high seed isoflavonoid cultivar) and Harovinton (low seed isoflavonoid cultivar) revealed that CHS7 and CHS8 were expressed at significantly greater level in RCAT Angora than in Harovinton. Our study provides a detailed transcriptome profiling of soybean embryos during development and indicates that differences in the level of seed isoflavonoids between these two cultivars could be as a result of differential expression of CHS7 and CHS8 during late stages of seed development
    corecore