176 research outputs found

    Grain Itch.

    Get PDF
    n/

    Cosmo MSW effect for mass varying neutrinos

    Full text link
    We consider neutrinos with varying masses which arise in scenarios relating neutrino masses to the dark energy density in the universe. We point out that the neutrino mass variation can lead to level crossing and thus a cosmo MSW effect, having dramatic consequences for the flavor ratio of astrophysical neutrinos.Comment: 8 pages, 1 figure, more detailed discussions, version to be published by Mod. Phys. Lett.

    Dark world and baryon asymmetry from a common source

    Full text link
    We study generation of baryon number asymmetry and both abundance of dark matter and dark energy on the basis of global symmetry and its associating flat directions in a supersymmetric model. We assume the existence of a model independent axion which is generally expected in the effective theory of superstring. If we consider a combined field of the model independent axion and a pseudo Nambu-Goldstone boson coming from spontaneous breaking of the global symmetry, its potential can be sufficiently flat and then it may present a candidate of the dark energy as a quintessential axion. Both the baryon asymmetry and the dark matter are supposed to be produced nonthermally as the asymmetry of another global charge through the Affleck-Dine mechanism along the relevant flat direction. Its decay to the observable and hidden sectors explains the baryon number asymmetry and the dark matter abundance, respectively.Comment: 28 page

    Statistical Analysis of future Neutrino Mass Experiments including Neutrino-less Double Beta Decay

    Full text link
    We perform a statistical analysis with the prospective results of future experiments on neutrino-less double beta decay, direct searches for neutrino mass (KATRIN) and cosmological observations. Realistic errors are used and the nuclear matrix element uncertainty for neutrino-less double beta decay is also taken into account. Three benchmark scenarios are introduced, corresponding to quasi-degenerate, inverse hierarchical neutrinos, and an intermediate case. We investigate to what extend these scenarios can be reconstructed. Furthermore, we check the compatibility of the scenarios with the claimed evidence of neutrino-less double beta decay.Comment: Matches published version: Europhys.Lett.85:51002 (2009). Format changed suitably for ArXi

    Acceleressence: Dark Energy from a Phase Transition at the Seesaw Scale

    Full text link
    Simple models are constructed for "acceleressence" dark energy: the latent heat of a phase transition occurring in a hidden sector governed by the seesaw mass scale v^2/M_Pl, where v is the electroweak scale and M_Pl the gravitational mass scale. In our models, the seesaw scale is stabilized by supersymmetry, implying that the LHC must discover superpartners with a spectrum that reflects a low scale of fundamental supersymmetry breaking. Newtonian gravity may be modified by effects arising from the exchange of fields in the acceleressence sector whose Compton wavelengths are typically of order the millimeter scale. There are two classes of models. In the first class the universe is presently in a metastable vacuum and will continue to inflate until tunneling processes eventually induce a first order transition. In the simplest such model, the range of the new force is bounded to be larger than 25 microns in the absence of fine-tuning of parameters, and for couplings of order unity it is expected to be \approx 100 microns. In the second class of models thermal effects maintain the present vacuum energy of the universe, but on further cooling, the universe will "soon" smoothly relax to a matter dominated era. In this case, the range of the new force is also expected to be of order the millimeter scale or larger, although its strength is uncertain. A firm prediction of this class of models is the existence of additional energy density in radiation at the eV era, which can potentially be probed in precision measurements of the cosmic microwave background. An interesting possibility is that the transition towards a matter dominated era has occurred in the very recent past, with the consequence that the universe is currently decelerating.Comment: 10 pages, references adde

    Mass-Varying Neutrinos from a Variable Cosmological Constant

    Full text link
    We consider, in a completely model-independent way, the transfer of energy between the components of the dark energy sector consisting of the cosmological constant (CC) and that of relic neutrinos. We show that such a cosmological setup may promote neutrinos to mass-varying particles, thus resembling a recently proposed scenario of Fardon, Nelson, and Weiner (FNW), but now without introducing any acceleronlike scalar fields. Although a formal similarity of the FNW scenario with the variable CC one can be easily established, one nevertheless finds different laws for neutrino mass variation in each scenario. We show that as long as the neutrino number density dilutes canonically, only a very slow variation of the neutrino mass is possible. For neutrino masses to vary significantly (as in the FNW scenario), a considerable deviation from the canonical dilution of the neutrino number density is also needed. We note that the present `coincidence' between the dark energy density and the neutrino energy density can be obtained in our scenario even for static neutrino masses.Comment: 8 pages, minor corrections, two references added, to apear in JCA

    Radiative neutrino mass generation and dark energy

    Full text link
    We study the models with radiative neutrino mass generation and explore the relation between the neutrino masses and dark energy. In these models, the pseudo-Nambu-Goldston bosons (pNGBs) arise at two-loop level via the Majorana neutrino masses. In particular, we demonstrate that the potential energy of the pNGB can be the dark energy potential and the observed value of the equation of state (EoS) parameter of the universe, i.e.i.e., w1w\simeq -1, can be realized.Comment: 10 pages, 1 figure, a minor correction in Eq. (17

    Dirac Neutrinos, Dark Energy and Baryon Asymmetry

    Get PDF
    We explore a new origin of neutrino dark energy and baryon asymmetry in the universe. The neutrinos acquire small masses through the Dirac seesaw mechanism. The pseudo-Nambu-Goldstone boson associated with neutrino mass-generation provides a candidate for dark energy. The puzzle of cosmological baryon asymmetry is resolved via neutrinogenesis.Comment: 6 pages, 1 figure. Accepted by JCAP (only minor rewordings, refs added

    Dark Energy and Neutrino CPT Violation

    Full text link
    In this paper we study the dynamical CPT violation in the neutrino sector induced by the dark energy of the Universe. Specifically we consider a dark energy model where the dark energy scalar derivatively interacts with the right-handed neutrinos. This type of derivative coupling leads to a cosmological CPT violation during the evolution of the background field of the dark energy. We calculate the induced CPT violation of left-handed neutrinos and find the CPT violation produced in this way is consistent with the present experimental limit and sensitive to the future neutrino oscillation experiments, such as the neutrino factory.Comment: 10 pages, 2 figures. Typos corrected and references added. To be published in EPJ

    CFHTLS weak-lensing constraints on the neutrino masses

    Full text link
    We use measurements of cosmic shear from CFHTLS, combined with WMAP-5 cosmic microwave background anisotropy data, baryonic acoustic oscillations from SDSS and 2dFGRS and supernovae data from SNLS and Gold-set, to constrain the neutrino mass. We obtain a 95% confidence level upper limit of 0.54 eV for the sum of the neutrino masses, and a lower limit of 0.03 eV. The preference for massive neutrinos vanishes when shear-measurement systematics are included in the analysis.Comment: 10 pages. Published versio
    corecore