92 research outputs found

    A Bayesian Approach to Locating the Red Giant Branch Tip Magnitude (Part I)

    Full text link
    We present a new approach for identifying the Tip of the Red Giant Branch (TRGB) which, as we show, works robustly even on sparsely populated targets. Moreover, the approach is highly adaptable to the available data for the stellar population under study, with prior information readily incorporable into the algorithm. The uncertainty in the derived distances is also made tangible and easily calculable from posterior probability distributions. We provide an outline of the development of the algorithm and present the results of tests designed to characterize its capabilities and limitations. We then apply the new algorithm to three M31 satellites: Andromeda I, Andromeda II and the fainter Andromeda XXIII, using data from the Pan-Andromeda Archaeological Survey (PAndAS), and derive their distances as 731(4)17(+5)+18731^{(+ 5) + 18}_{(- 4) - 17} kpc, 634(2)14(+2)+15634^{(+ 2) + 15}_{(- 2) - 14} kpc and 733(11)22(+13)+23733^{(+ 13)+ 23}_{(- 11) - 22} kpc respectively, where the errors appearing in parentheses are the components intrinsic to the method, while the larger values give the errors after accounting for additional sources of error. These results agree well with the best distance determinations in the literature and provide the smallest uncertainties to date. This paper is an introduction to the workings and capabilities of our new approach in its basic form, while a follow-up paper shall make full use of the method's ability to incorporate priors and use the resulting algorithm to systematically obtain distances to all of M31's satellites identifiable in the PAndAS survey area.Comment: 11 pages, 18 figure

    Major Substructure in the M31 Outer Halo: the South-West Cloud

    Full text link
    We undertake the first detailed analysis of the stellar population and spatial properties of a diffuse substructure in the outer halo of M31. The South-West Cloud lies at a projected distance of ~100 kpc from the centre of M31, and extends for at least ~50 kpc in projection. We use Pan-Andromeda Archaeological Survey photometry of red giant branch stars to determine a distance to the South-West Cloud of 793 +/- 45 kpc. The metallicity of the cloud is found to be [Fe/H] = -1.3 +/- 0.1. This is consistent with the coincident globular clusters PAndAS-7 and PAndAS-8, which have metallicities determined using an independent technique of [Fe/H] = -1.35 +/- 0.15. We measure a brightness for the Cloud of M_V = -12.1 mag; this is ~75 per cent of the luminosity implied by the luminosity-metallicity relation. Under the assumption that the South-West Cloud is the visible remnant of an accreted dwarf satellite, this suggests that the progenitor object was amongst M31's brightest dwarf galaxies prior to disruption.Comment: 13 pages, 9 figures, accepted for publication in MNRA

    Density Variations in the NW Star Stream of M31

    Full text link
    The Pan Andromeda Archeological Survey (PAndAS) CFHT Megaprime survey of the M31-M33 system has found a star stream which extends about 120 kpc NW from the center of M31. The great length of the stream, and the likelihood that it does not significantly intersect the disk of M31, means that it is unusually well suited for a measurement of stream gaps and clumps along its length as a test for the predicted thousands of dark matter sub-halos. The main result of this paper is that the density of the stream varies between zero and about three times the mean along its length on scales of 2 to 20 kpc. The probability that the variations are random fluctuations in the star density is less than 10^-5. As a control sample we search for density variations at precisely the same location in stars with metallicity higher than the stream, [Fe/H]=[0, -0.5] and find no variations above the expected shot noise. The lumpiness of the stream is not compatible with a low mass star stream in a smooth galactic potential, nor is it readily compatible with the disturbance caused by the visible M31 satellite galaxies. The stream's density variations appear to be consistent with the effects of a large population of steep mass function dark matter sub-halos, such as found in LCDM simulations, acting on an approximately 10Gyr old star stream. The effects of a single set of halo substructure realizations are shown for illustration, reserving a statistical comparison for another study.Comment: ApJ revised version submitte

    The PAndAS Field of Streams: stellar structures in the Milky Way halo toward Andromeda and Triangulum

    Full text link
    We reveal the highly structured nature of the Milky Way stellar halo within the footprint of the PAndAS photometric survey from blue main sequence and main sequence turn-off stars. We map no fewer than five stellar structures within a heliocentric range of ~5 to 30 kpc. Some of these are known (the Monoceros Ring, the Pisces/Triangulum globular cluster stream), but we also uncover three well-defined stellar structures that could be, at least partly, responsible for the so-called Triangulum/Andromeda and Triangulum/Andromeda 2 features. In particular, we trace a new faint stellar stream located at a heliocentric distance of ~17 kpc. With a surface brightness of \Sigma_V ~ 32-32.5 mag/arcsec^2, it follows an orbit that is almost parallel to the Galactic plane north of M31 and has so far eluded surveys of the Milky Way halo as these tend to steer away from regions dominated by the Galactic disk. Investigating our follow-up spectroscopic observations of PAndAS, we serendipitously uncover a radial velocity signature from stars that have colors and magnitudes compatible with the stream. From the velocity of eight likely member stars, we show that this stellar structure is dynamically cold, with an unresolved velocity dispersion that is lower than 7.1 km/s at the 90-percent confidence level. Along with the width of the stream (300-650 pc), its dynamics points to a dwarf-galaxy-accretion origin. The numerous stellar structures we can map in the Milky Way stellar halo between 5 and 30 kpc and their varying morphology is a testament to the complex nature of the stellar halo at these intermediate distances.Comment: 11 pages, 8 figures, accepted for publication in the ApJ, Figure 3 is the money plo

    The PAndAS field of streams: Stellar structures in the milky way halo toward andromeda and triangulum

    Get PDF
    We reveal the highly structured nature of the Milky Way (MW) stellar halo within the footprint of the Pan-Andromeda Archaeological Survey (PAndAS) photometric survey from blue main sequence (MS) and MS turn-off stars. We map no fewer than five stellar structures within a heliocentric range of 5-30 kpc. Some of these are known (the Monoceros Ring, the Pisces/Triangulum globular cluster stream), but we also uncover three well-defined stellar structures that could be, at least partly, responsible for the so-called Triangulum/Andromeda and Triangulum/Andromeda 2 features. In particular, we trace a new faint stellar stream located at a heliocentric distance of 17 kpc. With a surface brightness of Σ V 32-32.5 mag arcsec-2, it follows an orbit that is almost parallel to the Galactic plane north of M31 and has so far eluded surveys of the MW halo as these tend to steer away from regions dominated by the Galactic disk. Investigating our follow-up spectroscopic observations of PAndAS, we serendipitously uncover a radial velocity signature from stars that have colors and magnitudes compatible with the stream. From the velocity of eight likely member stars, we show that this stellar structure is dynamically cold, with an unresolved velocity dispersion that is lower than 7.1 km s-1 at the 90% confidence level. Along with the width of the stream (300-650 pc), its dynamics point to a dwarf-galaxy-accretion origin. The numerous stellar structures we can map in the MW stellar halo between 5 and 30 kpc and their varying morphology is a testament to the complex nature of the stellar halo at these intermediate distances

    PAndAS' cubs: discovery of two new dwarf galaxies in the surroundings of the Andromeda and Triangulum galaxies

    Full text link
    We present the discovery of two new dwarf galaxies, Andromeda XXI and Andromeda XXII, located in the surroundings of the Andromeda and Triangulum galaxies (M31 and M33). These discoveries stem from the first year data of the Pan-Andromeda Archaeological Survey (PAndAS), a photometric survey of the M31/M33 group conducted with the Megaprime/MegaCam wide-field camera mounted on the Canada-France-Hawaii Telescope. Both satellites appear as spatial overdensities of stars which, when plotted in a color-magnitude diagram, follow metal-poor, [Fe/H]=-1.8, red giant branches at the distance of M31/M33. Andromeda XXI is a moderately bright dwarf galaxy (M_V=-9.9+/-0.6), albeit with low surface brightness, emphasizing again that many relatively luminous M31 satellites still remain to be discovered. It is also a large satellite, with a half-light radius close to 1 kpc, making it the fourth largest Local Group dwarf spheroidal galaxy after the recently discovered Andromeda XIX, Andromeda II and Sagittarius around the Milky Way, and supports the trend that M31 satellites are larger than their Milky Way counterparts. Andromeda XXII is much fainter (M_V=-6.5+/-0.8) and lies a lot closer in projection to M33 than it does to M31 (42 vs. 224 kpc), suggesting that it could be the first Triangulum satellite to be discovered. Although this is a very exciting possibility in the context of a past interaction of M33 with M31 and the fate of its satellite system, a confirmation will have to await a good distance estimate to confirm its physical proximity to M33. Along with the dwarf galaxies found in previous surveys of the M31 surroundings, these two new satellites bring the number of dwarf spheroidal galaxies in this region to 20.Comment: 10 pages, 6 figures, accepted for publication in ApJ; v2: minor typographical correction

    PAndAS in the mist: The stellar and gaseous mass within the halos of M31 and M33

    Get PDF
    Large-scale surveys of the prominent members of the Local Group have provided compelling evidence for the hierarchical formation of massive galaxies, revealing a wealth of substructure that is thought to be the debris from ancient and ongoing accretion events. In this paper, we compare two extant surveys of the M31-M33 subgroup of galaxies: the Pan-Andromeda Archaeological Survey of the stellar structure, and a combination of observations of the H I gaseous content, detected at 21 cm. Our key finding is a marked lack of spatial correlation between these two components on all scales, with only a few potential overlaps between stars and gas. The paucity of spatial correlation significantly restricts the analysis of kinematic correlations, although there does appear to be H I kinematically associated with the Giant Stellar Stream where it passes the disk of M31. These results demonstrate that different processes must significantly influence the dynamical evolution of the stellar and H I components of substructures, such as ram pressure driving gas away from a purely gravitational path. Detailed modeling of the offset between the stellar and gaseous substructures will provide a determination of the properties of the gaseous halos of M31 and M33

    The Recent Stellar Archeology of M31 - The Nearest Red Disk Galaxy

    Full text link
    We examine the star-forming history (SFH) of the M31 disk during the past few hundred Myr. The luminosity functions (LFs) of main sequence stars at distances R_GC > 21 kpc (i.e. > 4 disk scale lengths) are matched by models that assume a constant star formation rate (SFR). However, at smaller R_GC the LFs suggest that during the past ~10 Myr the SFR was 2 - 3 times higher than during the preceding ~100 Myr. The rings of cool gas that harbor a significant fraction of the current star-forming activity are traced by stars with ages ~100 Myr, indicating that (1) these structures have ages of at least 100 Myr, and (2) stars in these structures do not follow the same relation between age and random velocity as their counterparts throughout the disks of other spiral galaxies, probably due to the inherently narrow orbital angular momentum distribution of the giant molecular clouds in these structures. The distribution of evolved red stars is not azimuthally symmetric, in the sense that their projected density along the north east segment of the major axis is roughly twice that on the opposite side of the galaxy. The north east arm of the major axis thus appears to be a fossil star-forming area that dates to intermediate epochs. Such a structure may be the consequence of interactions with a companion galaxy.Comment: To appear in The Astrophysical Journa
    corecore