75 research outputs found
Using recognition testing to support semantic learning in developmental amnesia
Patients with developmental amnesia (DA) have suffered hippocampal damage in infancy and subsequently shown poor episodic memory, but good semantic memory. It is not clear how patients with DA learn semantic information in the presence of episodic amnesia. However, patients with DA show good recognition memory and it is possible that semantic learning may be supported by recognition. Building on previous work, we compared two methods for supporting semantic learning in DA; recognition-learning and recall-learning. In each condition, a patient with DA (aged 8 years) was presented with semantic information in animated videos. After each presentation of a video, learning was supported by an immediate memory test. Two videos were paired with a cued recall test. Another two videos were paired with a multiple-choice test to enable recognition-based learning. The outcome measure was semantic recall performance after a short delay of 30 min and a long delay of one week. Results showed a benefit of recognition-learning compared to recall-learning on cued recall in the patient with DA (76% vs. 35%). This finding indicates that young people with severe hippocampal damage can utilize recognition to support semantic learning. This has implications for the support of school-aged children with episodic memory difficulties
The impact of therapy for childhood acute lymphoblastic leukaemia on intelligence quotients; results of the risk-stratified randomized central nervous system treatment trial MRC UKALL XI
<p>Background: The MRC UKALLXI trial tested the efficacy of different central nervous system (CNS) directed therapies in childhood acute lymphoblastic leukaemia (ALL). To evaluate morbidity 555/1826 randomised children underwent prospective psychological evaluations. Full Scale, verbal and performance IQs were measured at 5 months, 3 years and 5 years. Scores were compared in; (1) all patients (n = 555) versus related controls (n = 311), (2) low-risk children (presenting white cell count (WCC) < 50 × 109/l) randomised to intrathecal methotrexate (n = 197) versus intrathecal and high-dose intravenous methotrexate (HDM) (n = 202), and (3) high-risk children (WCC ≥ 50 × 109/l, age ≥ 2 years) randomised to HDM (n = 79) versus cranial irradiation (n = 77).</p>
<p>Results: There were no significant differences in IQ scores between the treatment arms in either low- or high-risk groups. Despite similar scores at baseline, results at 3 and 5 years showed a significant reduction of between 3.6 and 7.3 points in all three IQ scores in all patient groups compared to controls (P < 0.002) with a higher proportion of children with IQs < 80 in the patient groups (13% vs. 5% at 3 years p = 0.003).</p>
<p>Conclusion: Children with ALL are at risk of CNS morbidity, regardless of the mode of CNS-directed therapy. Further work needs to identify individuals at high-risk of adverse CNS outcomes.</p>
Optic radiation structure and anatomy in the normally developing brain determined using diffusion MRI and tractography
The optic radiation (OR) is a component of the visual system known to be myelin mature very early in life. Diffusion tensor imaging (DTI) and its unique ability to reconstruct the OR in vivo were used to study structural maturation through analysis of DTI metrics in a cohort of 90 children aged 5–18 years. As the OR is at risk of damage during epilepsy surgery, we measured its position relative to characteristic anatomical landmarks. Anatomical distances, DTI metrics and volume of the OR were investigated for age, gender and hemisphere effects. We observed changes in DTI metrics with age comparable to known trajectories in other white matter tracts. Left lateralization of DTI metrics was observed that showed a gender effect in lateralization. Sexual dimorphism of DTI metrics in the right hemisphere was also found. With respect to OR dimensions, volume was shown to be right lateralised and sexual dimorphism demonstrated for the extent of the left OR. The anatomical results presented for the OR have potentially important applications for neurosurgical planning
Episodic memory development: Bridging animal and human research
Human episodic memory is not functionally evident until about 2 years of age and continues to develop into the school years. Behavioral studies have elucidated this developmental timeline and its constituent processes. In tandem, lesion and neurophysiological studies in non-human primates and rodents have identified key neural substrates and circuit mechanisms that may underlie episodic memory development. Despite this progress, collaborative efforts between psychologists and neuroscientists remain limited, hindering progress. Here, we seek to bridge human and non-human episodic memory development research by offering a comparative review of studies using humans, non-human primates, and rodents. We highlight critical theoretical and methodological issues that limit cross-fertilization and propose a common research framework, adaptable to different species, that may facilitate cross-species research endeavors
Recommended from our members
Neocerebellar Crus I Abnormalities Associated with a Speech and Language Disorder Due to a Mutation in FOXP2
Bilateral volume reduction in the caudate nucleus has been established as a prominent brain abnormality associated with a FOXP2 mutation in affected members of the ‘KE family’, who present with developmental orofacial and verbal dyspraxia in conjunction with pervasive language deficits. Despite the gene’s early and prominent expression in the cerebellum and the evidence for reciprocal cerebellum-basal ganglia connectivity, very little is known about cerebellar abnormalities in affected KE members. Using cerebellum-specific voxel-based morphometry (VBM) and volumetry, we provide converging evidence from subsets of affected KE members scanned at three time points for grey matter (GM) volume reduction bilaterally in neocerebellar lobule VIIa Crus I compared with unaffected members and unrelated controls. We also show that right Crus I volume correlates with left and total caudate nucleus volumes in affected KE members, and that right and total Crus I volumes predict the performance of affected members in non-word repetition and non-verbal orofacial praxis. Crus I also shows bilateral hypo-activation in functional MRI in the affected KE members relative to controls during non-word repetition. The association of Crus I with key aspects of the behavioural phenotype of this FOXP2 point mutation is consistent with recent evidence of cerebellar involvement in complex motor sequencing. For the first time, specific cerebello-basal ganglia loops are implicated in the execution of complex oromotor sequences needed for human speech
Volume reduction of caudate nucleus is associated with movement coordination deficits in patients with hippocampal atrophy due to perinatal hypoxia-ischaemia
Acute sentinel hypoxia-ischaemia in neonates can target the hippocampus, mammillary bodies, thalamus, and the basal ganglia. Our previous work with paediatric patients with a history of hypoxia-ischaemia has revealed hippocampal and diencephalic damage that impacts cognitive memory. However, the structural and functional status of other brain regions vulnerable to hypoxia-ischaemia, such as the basal ganglia, has not been investigated in these patients. Furthermore, it is not known whether there are any behavioural sequelae of such damage, especially in patients with no diagnosis of neurological disorder. Based on the established role of the basal ganglia and the thalamus in movement coordination, we studied manual motor function in 20 participants exposed to neonatal hypoxia-ischaemia, and a group of 17 healthy controls of comparable age. The patients’ handwriting speed and accuracy was within the normal range (Detailed Assessment of Speed of Handwriting), and their movement adaptation learning (Rotary Pursuit task) was comparable to the control group’s performance. However, as a group, patients showed an impairment in the Grooved Pegboard task and a trend for impairment in speed of movement while performing the Rotary Pursuit task, suggesting that some patients have subtle deficits in fine, complex hand movements. Voxel-based morphometry and volumetry showed bilateral reduction in grey matter volume of the thalamus and caudate nucleus. Reduced volumes in the caudate nucleus correlated across patients with performance on the Grooved Pegboard task. In summary, the fine movement coordination deficit affecting the hand and the wrist in patients exposed to early hypoxic-ischaemic brain injury may be related to reduced volumes of the caudate nucleus, and consistent with anecdotal parental reports of clumsiness and coordination difficulties in this cohort
Item-location binding in working memory: Is it hippocampus-dependent?
A general consensus is emerging that the hippocampus has an important and active role in the creation of new long-term memory representations of associations or bindings between elements. However, it is less clear whether this contribution can be extended to the creation of temporary bound representations in working memory, involving the retention of small numbers of items over short delays. We examined this by administering a series of recognition and recall tests of working memory for color-location binding and object-location binding to a patient with highly selective hippocampal damage (Jon), and groups of control participants. Jon achieved high levels of accuracy in all working memory tests of recognition and recall binding across retention intervals of up to 10 seconds. In contrast, Jon performed at chance on an unexpected delayed test of the same object-location binding information. These findings indicate a clear dissociation between working memory and long-term memory, with no evidence for a critical hippocampal contribution to item-location binding in working memory
Recommended from our members
HEMISPHERIC SPECIALIZATION IN CONGENITALLY DEAF AND HEARING CHILDREN AND ADOLESCENTS
Abstract not availabl
Are there sex differences in the brain basis of literacy related skills? Evidence from reading and spelling impairments after early unilateral brain damage
Reading and spelling performance was analysed for a sample of 45 children with unilateral brain damage. Boys showed impairments only when the lesion was on the left, while girls showed no significant impairments when either hemisphere was affected. The results support the hypothesis that specialised substrates, which underlie literacy acquisition, have limited plasticity and may be more strongly lateralised to the left hemisphere in males than in females
- …