155 research outputs found

    Does microbicide use in consumer products promote antimicrobial resistance? A critical review and recommendations for a cohesive approach to risk assessment

    Get PDF
    The increasing use of microbicides in consumer products is raising concerns related to enhanced microbicide resistance in bacteria and potential cross resistance to antibiotics. The recently published documents on this topic from the European Commission have spawned much interest to better understand the true extent of the putative links for the benefit of the manufacturers, regulators, and consumers alike. This white paper is based on a 2-day workshop (SEAC-Unilever, Bedford, United Kingdom; June 2012) in the fields of microbicide usage and resistance. It identifies gaps in our knowledge and also makes specific recommendations for harmonization of key terms and refinement/standardization of methods for testing microbicide resistance to better assess the impact and possible links with cross resistance to antibiotics. It also calls for a better cohesion in research in this field. Such information is crucial to developing any risk assessment framework on microbicide use notably in consumer products. The article also identifies key research questions where there are inadequate data, which, if addressed, could promote improved knowledge and understanding to assess any related risks for consumer and environmental safety

    The epidemiology of silent brain infarction: a systematic review of population-based cohorts

    Get PDF

    Topographical distribution of perioperative cerebral infarction associated with transcatheter aortic valve implantation

    Get PDF
    Transcatheter aortic valve implantation (TAVI) is associated with a high incidence of cerebrovascular injury. As these injuries are thought to be primarily embolic, neuroprotection strategies have focused on embolic protection devices. However, the topographical distribution of cerebral emboli and how this impacts on the effectiveness of these devices have not been thoroughly assessed. Here, we evaluated the anatomical characteristics of magnetic resonance imaging (MRI)-defined cerebral ischemic lesions occurring secondary to TAVI to enhance our understanding of the distribution of cardioembolic phenomena.Forty patients undergoing transfemoral TAVI with an Edwards SAPIEN-XT valve under general anesthesia were enrolled prospectively in this observational study. Participants underwent brain MRI preprocedure, and 3 ± 1 days and 6 ± 1 months postprocedure.Mean ± SD participant age was 82 ± 7 years. Patients had an intermediate to high surgical risk, with a mean Society of Thoracic Surgeons score of 6.3 ± 3.5 and EuroSCORE of 18.1 ± 10.6. Post-TAVI, there were no clinically apparent cerebrovascular events, but MRI assessments identified 83 new lesions across 19 of 31 (61%) participants, with a median ± interquartile range number and volume of 1 ± 2.8 lesions and 20 ± 190 μL per patient. By volume, 80% of the infarcts were cortical, 90% in the posterior circulation and 81% in the right hemisphere.The distribution of lesions that we detected suggests that cortical gray matter, the posterior circulation, and the right hemisphere are all particularly vulnerable to perioperative cerebrovascular injury. This finding has implications for the use of intraoperative cerebral embolic protection devices, particularly those that leave the left subclavian and, therefore, left vertebral artery unprotected

    Genesis and preservation of a uranium-rich Paleozoic epithermal system with a surface expression (Northern Flinders Ranges, South Australia): radiogenic heat driving regional hydrothermal circulation over geological timescales

    Get PDF
    The surface expressions of hydrothermal systems are prime targets for astrobiological exploration, and fossil systems on Earth provide an analogue to guide this endeavor. The Paleozoic Mt. Gee–Mt. Painter system (MGPS) in the Northern Flinders Ranges of South Australia is exceptionally well preserved and displays both a subsurface quartz sinter (boiling horizon) and remnants of aerial sinter pools that lie in near-original position. The energy source for the MGPS is not related to volcanism but to radiogenic heat produced by U-Th-K-rich host rocks. This radiogenic heat source drove hydrothermal circulation over a long period of time (hundreds of millions of years, from Permian to present), with peaks in hydrothermal activity during periods of uplift and high water supply. This process is reflected by ongoing hot spring activity along a nearby fault. The exceptional preservation of the MGPS resulted from the lack of proximal volcanism, coupled with tectonics driven by an oscillating far-field stress that resulted in episodic basement uplift. Hydrothermal activity caused the remobilization of U and rare earth elements (REE) in host rocks into (sub)economic concentrations. Radiogenic-heat-driven systems are attractive analogues for environments that can sustain life over geological times; the MGPS preserves evidence of episodic fluid flow for the past 300 million years. During periods of reduced hydrothermal activity (e.g., limited water supply, quiet tectonics), radiolytic H2 production has the potential to support an ecosystem indefinitely. Remote exploration for deposits similar to those at the MGPS systems can be achieved by combining hyperspectral and gamma-ray spectroscopy.Joël Brugger, Pierre-Alain Wülser and John Fode

    Temporal variability in shell mound formation at Albatross Bay, northern Australia

    Get PDF
    We report the results of 212 radiocarbon determinations from the archaeological excavation of 70 shell mound deposits in the Wathayn region of Albatross Bay, Australia. This is an intensive study of a closely co-located group of mounds within a geographically restricted area in a wider region where many more shell mounds have been reported. Valves from the bivalve Tegillarcca granosa were dated. The dates obtained are used to calculate rates of accumulation for the shell mound deposits. These demonstrate highly variable rates of accumulation both within and between mounds. We assess these results in relation to likely mechanisms of shell deposition and show that rates of deposition are affected by time-dependent processes both during the accumulation of shell deposits and during their subsequent deformation. This complicates the interpretation of the rates at which shell mound deposits appear to have accumulated. At Wathayn, there is little temporal or spatial consistency in the rates at which mounds accumulated. Comparisons between the Wathayn results and those obtained from shell deposits elsewhere, both in the wider Albatross Bay region and worldwide, suggest the need for caution when deriving behavioural inferences from shell mound deposition rates, and the need for more comprehensive sampling of individual mounds and groups of mounds

    The DESI One-Percent survey: constructing galaxy-halo connections for ELGs and LRGs using auto and cross correlations

    Full text link
    In the current Dark Energy Spectroscopic Instrument (DESI) survey, emission line galaxies (ELGs) and luminous red galaxies (LRGs) are essential for mapping the dark matter distribution at z1z \sim 1. We measure the auto and cross correlation functions of ELGs and LRGs at 0.8<z1.00.8<z\leq 1.0 from the DESI One-Percent survey. Following Gao et al. (2022), we construct the galaxy-halo connections for ELGs and LRGs simultaneously. With the stellar-halo mass relation (SHMR) for the whole galaxy population (i.e. normal galaxies), LRGs can be selected directly by stellar mass, while ELGs can also be selected randomly based on the observed number density of each stellar mass, once the probability PsatP_{\mathrm{sat}} of a satellite galaxy becoming an ELG is determined. We demonstrate that the observed small scale clustering prefers a halo mass-dependent PsatP_{\mathrm{sat}} model rather than a constant. With this model, we can well reproduce the auto correlations of LRGs and the cross correlations between LRGs and ELGs at rp>0.1r_{\mathrm{p}}>0.1 Mpch1\mathrm{Mpc}\,h^{-1}. We can also reproduce the auto correlations of ELGs at rp>0.3r_{\mathrm{p}}>0.3 Mpch1\mathrm{Mpc}\,h^{-1} (s>1s>1 Mpch1\mathrm{Mpc}\,h^{-1}) in real (redshift) space. Although our model has only seven parameters, we show that it can be extended to higher redshifts and reproduces the observed auto correlations of ELGs in the whole range of 0.8<z<1.60.8<z<1.6, which enables us to generate a lightcone ELG mock for DESI. With the above model, we further derive halo occupation distributions (HODs) for ELGs which can be used to produce ELG mocks in coarse simulations without resolving subhalos.Comment: 27 pages, 16 figures, accepted by Ap

    IL-1α Mediated Chorioamnionitis Induces Depletion of FoxP3+ Cells and Ileal Inflammation in the Ovine Fetal Gut

    Get PDF
    Endotoxin induced chorioamnionitis increases IL-1 and provokes an inflammatory response in the fetal ileum that interferes with intestinal maturation. In the present study, we tested in an ovine chorioamnionitis model whether IL-1 is a major cytokine driving the inflammatory response in the fetal ileum.Sheep bearing singleton fetuses received a single intraamniotic injection of recombinant ovine IL-1α at 7, 3 or 1 d before caesarian delivery at 125 days gestational age (term = 150 days).3 and 7 d after IL-1α administration, intestinal mRNA levels for IL-4, IL-10, IFN-γ and TNF-α were strongly elevated. Numbers of CD3+ and CD4+ T-lymphocytes and myeloidperoxidase+ cells were increased whereas FoxP3+ T-cells were detected at low frequency. This increased proinflammatory state was associated with ileal mucosal barrier loss as demonstrated by decreased levels of the intestinal fatty acid binding protein and disruption of the tight junctional protein ZO-1.Intraamniotic IL-1α causes an acute detrimental inflammatory response in the ileum, suggesting that induction of IL-1 is a critical element in the pathophysiological effects of endotoxin induced chorioamnionitis. A disturbed balance between T-effector and FoxP3+ cells may contribute to this process

    A new structural framework for integrating replication protein A into DNA processing machinery

    Get PDF
    By coupling the protection and organization of single-stranded DNA (ssDNA) with recruitment and alignment of DNA processing factors, replication protein A (RPA) lies at the heart of dynamic multi-protein DNA processing machinery. Nevertheless, how RPA coordinates biochemical functions of its eight domains remains unknown. We examined the structural biochemistry of RPA’s DNA-binding activity, combining small-angle X-ray and neutron scattering with all-atom molecular dynamics simulations to investigate the architecture of RPA’s DNA-binding core. The scattering data reveal compaction promoted by DNA binding; DNA-free RPA exists in an ensemble of states with inter-domain mobility and becomes progressively more condensed and less dynamic on binding ssDNA. Our results contrast with previous models proposing RPA initially binds ssDNA in a condensed state and becomes more extended as it fully engages the substrate. Moreover, the consensus view that RPA engages ssDNA in initial, intermediate and final stages conflicts with our data revealing that RPA undergoes two (not three) transitions as it binds ssDNA with no evidence for a discrete intermediate state. These results form a framework for understanding how RPA integrates the ssDNA substrate into DNA processing machinery, provides substrate access to its binding partners and promotes the progression and selection of DNA processing pathways

    GTC Follow-up Observations of Very Metal-Poor Star Candidates from DESI

    Full text link
    The observations from the Dark Energy Spectroscopic Instrument (DESI) will significantly increase the numbers of known extremely metal-poor stars by a factor of ~ 10, improving the sample statistics to study the early chemical evolution of the Milky Way and the nature of the first stars. In this paper we report high signal-to-noise follow-up observations of 9 metal-poor stars identified during the DESI commissioning with the Optical System for Imaging and low-Intermediate-Resolution Integrated Spectroscopy (OSIRIS) instrument on the 10.4m Gran Telescopio Canarias (GTC). The analysis of the data using a well-vetted methodology confirms the quality of the DESI spectra and the performance of the pipelines developed for the data reduction and analysis of DESI data.Comment: 13 pages, 4 figures, to be submitted to ApJ, data available from https://doi.org/10.5281/zenodo.802084

    The DESI Bright Galaxy Survey: Final Target Selection, Design, and Validation

    Get PDF
    Over the next 5 yr, the Dark Energy Spectroscopic Instrument (DESI) will use 10 spectrographs with 5000 fibers on the 4 m Mayall Telescope at Kitt Peak National Observatory to conduct the first Stage IV dark energy galaxy survey. At z 10 million galaxies spanning 14,000 deg2 . In this work, we present and validate the final BGS target selection and survey design. From the Legacy Surveys, BGS will target an r 80% fiber assignment efficiency. Finally, BGS Bright and BGS Faint will achieve >95% redshift success over any observing condition. BGS meets the requirements for an extensive range of scientific applications. BGS will yield the most precise baryon acoustic oscillation and redshift-space distortion measurements at z < 0.4. It presents opportunities for new methods that require highly complete and dense samples (e.g., N-point statistics, multitracers). BGS further provides a powerful tool to study galaxy populations and the relations between galaxies and dark matter
    corecore