23 research outputs found

    Crystallization of Adenylylsulfate Reductase from Desulfovibrio gigas: A Strategy Based on Controlled Protein Oligomerization

    Get PDF
    Adenylylsulfate reductase (adenosine 5′-phosphosulfate reductase, APS reductase or APSR, E.C.1.8.99.2) catalyzes the conversion of APS to sulfite in dissimilatory sulfate reduction. APSR was isolated and purified directly from massive anaerobically grown Desulfovibrio gigas, a strict anaerobe, for structure and function investigation. Oligomerization of APSR to form dimers–α_2β_2, tetramers–α_4β_4, hexamers–α_6β_6, and larger oligomers was observed during purification of the protein. Dynamic light scattering and ultracentrifugation revealed that the addition of adenosine monophosphate (AMP) or adenosine 5′-phosphosulfate (APS) disrupts the oligomerization, indicating that AMP or APS binding to the APSR dissociates the inactive hexamers into functional dimers. Treatment of APSR with β-mercaptoethanol decreased the enzyme size from a hexamer to a dimer, probably by disrupting the disulfide Cys156—Cys162 toward the C-terminus of the β-subunit. Alignment of the APSR sequences from D. gigas and A. fulgidus revealed the largest differences in this region of the β-subunit, with the D. gigas APSR containing 16 additional amino acids with the Cys156—Cys162 disulfide. Studies in a pH gradient showed that the diameter of the APSR decreased progressively with acidic pH. To crystallize the APSR for structure determination, we optimized conditions to generate a homogeneous and stable form of APSR by combining dynamic light scattering, ultracentrifugation, and electron paramagnetic resonance methods to analyze the various oligomeric states of the enzyme in varied environments

    Clinical Significance of Community- and Healthcare-Acquired Carbapenem-Resistant Enterobacteriaceae Isolates

    No full text
    <div><p>This study was conducted to investigate the clinical significance, manifestations, microbiological characteristics and outcomes of carbapenem-resistant Enterobacteriaceae (CRE) isolates, and compare the clinical features of community- and healthcare-acquired CRE isolates. A total of 78 patients were identified to have CRE. <i>Klebsiella pneumoniae</i> was the most common pathogens (n = 42, 53.8%), followed by <i>Enterobacter cloacae</i> (n = 24, 30.8%), and <i>Escherichia coli</i> (n = 11, 14.1%). Most of the patients acquired CRE from healthcare settings (n = 55, 70.5%), and other cases got CRE from community settings (n = 23, 29.5%). Nine cases (11.5%) were classified as CRE colonization. Among the remaining 69 cases of CRE infections, pneumonia (n = 28, 40.6%) was the most common type of infections, followed by urinary tract infection (n = 24, 34.8%), and intra-abdominal infection (n = 16, 23.2%). The patients acquired CRE from community settings were more likely to be elderly, female, and had more urinary tract infections than from healthcare settings. In contrast, the patients acquired CRE from healthcare settings had more intra-abdominal infections, intra-abdominal surgery, and presence of indwelling device than from community settings. In conclusion, community-acquired CRE are not rare, and their associated clinical presentations are different from healthcare-acquired CRE.</p></div
    corecore