5 research outputs found

    The Iso2k database: a global compilation of paleo-ÎŽ18O and ÎŽ2H records to aid understanding of common era climate

    Get PDF
    Reconstructions of global hydroclimate during the Common Era (CE; the past ~2,000 years) are important for providing context for current and future global environmental change. Stable isotope ratios in water are quantitative indicators of hydroclimate on regional to global scales, and these signals are encoded in a wide range of natural geologic archives. Here we present the Iso2k database, a global compilation of previously published datasets from a variety of natural archives that record the stable oxygen (ÎŽ18O) or hydrogen (ÎŽÂČH) isotopic composition of environmental waters, which reflect hydroclimate changes over the CE. The Iso2k database contains 756 isotope records from the terrestrial and marine realms, including: glacier and ground ice (205); speleothems (68); corals, sclerosponges, and mollusks (145); wood (81); lake sediments and other terrestrial sediments (e.g., loess) (158); and marine sediments (99). Individual datasets have temporal resolutions ranging from sub-annual to centennial, and include chronological data where available. A fundamental feature of the database is its comprehensive metadata, which will assist both experts and non-experts in the interpretation of each record and in data synthesis. Key metadata fields have standardized vocabularies to facilitate comparisons across diverse archives and with climate model simulated fields. This is the first global-scale collection of water isotope proxy records from multiple types of geological and biological archives. It is suitable for evaluating hydroclimate processes through time and space using large-scale synthesis, model-data intercomparison and (paleo)data assimilation. The Iso2k database is available for download at: https://doi.org/10.25921/57j8-vs18 (Konecky and McKay, 2020) and is also accessible via through the NOAA/WDS Paleo Data landing page: https://www.ncdc.noaa.gov/paleo/study/29593

    Globally coherent water cycle response to temperature change during the past two millennia

    Get PDF
    The response of the global water cycle to changes in global surface temperature remains an outstanding question in future climate projections and in past climate reconstructions. The stable hydrogen and oxygen isotope compositions of precipitation (ήprecip), meteoric water (ήMW) and seawater (ήSW) integrate processes from microphysical to global scales and thus are uniquely positioned to track global hydroclimate variations. Here we evaluate global hydroclimate during the past 2,000 years using a globally distributed compilation of proxies for ήprecip, ήMW and ήSW. We show that global mean surface temperature exerted a coherent influence on global ήprecip and ήMW throughout the past two millennia, driven by global ocean evaporation and condensation processes, with lower values during the Little Ice Age (1450–1850) and higher values after the onset of anthropogenic warming (~1850). The Pacific Walker Circulation is a predominant source of regional variability, particularly since 1850. Our results demonstrate rapid adjustments in global precipitation and atmospheric circulation patterns—within decades—as the planet warms and cools

    PaCTS 1.0: a crowdsourced reporting standard for paleoclimate data

    No full text
    The progress of science is tied to the standardization of measurements, instruments, and data. This is especially true in the Big Data age, where analyzing large data volumes critically hinges on the data being standardized. Accordingly, the lack of community‐sanctioned data standards in paleoclimatology has largely precluded the benefits of Big Data advances in the field. Building upon recent efforts to standardize the format and terminology of paleoclimate data, this article describes the Paleoclimate Community reporTing Standard (PaCTS), a crowdsourced reporting standard for such data. PaCTS captures which information should be included when reporting paleoclimate data, with the goal of maximizing the reuse value of paleoclimate data sets, particularly for synthesis work and comparison to climate model simulations. Initiated by the LinkedEarth project, the process to elicit a reporting standard involved an international workshop in 2016, various forms of digital community engagement over the next few years, and grassroots working groups. Participants in this process identified important properties across paleoclimate archives, in addition to the reporting of uncertainties and chronologies; they also identified archive‐specific properties and distinguished reporting standards for new versus legacy data sets. This work shows that at least 135 respondents overwhelmingly support a drastic increase in the amount of metadata accompanying paleoclimate data sets. Since such goals are at odds with present practices, we discuss a transparent path toward implementing or revising these recommendations in the near future, using both bottom‐up and top‐down approaches
    corecore