51 research outputs found

    Transcriptional control of macrophage function in the pig and its relationship to infectious disease susceptibility

    Get PDF
    The biology of cells of the mononuclear phagocyte system has been studied extensively in the mouse. Studies of the pig as an experimental model have commonly been consigned to specialist animal science journals. This thesis considered some of the many ways that pigs may address the shortcomings of mice as models for the study of macrophage differentiation and activation in vitro, and the biology of sepsis and other pathologies in the living animal. Flow cytometry was used initially to phenotype cells from the porcine lung, peritoneal cavity, blood and bone marrow using the LPS receptor CD14 and the FC receptor CD16, markers frequently employed to differentiate human monocytes into subsets. The expression of SIRP-alpha (SWC3a, CD172a), which is present on all cells of myeloid origin, and the haemoglobin scavenger receptor, CD163 which has previously been used to study monocyte differentiation in the pig was also studied. The findings validated previous work where blood monocytes were divided into subsets on the expression of CD14 and CD163. Furthermore, like human and mouse, pig monocytes also exhibited variation in CD16 expression, having a subset which was CD14hiCD16lo and another which was CD14loCD16hi. A whole genome approach was then used to study the differences between the monocyte subsets in the pig, using monocytes sorted into two populations based on the expression of CD14 and CD163. The gene expression profiles obtained were then compared to publically available data from monocyte subsets in human and mouse. This thesis also investigated the expression of genes that are known to be differentially expressed between human and mouse. To do this gene expression in porcine bone marrow derived macrophages was analyzed across an LPS time course. Like human macrophages, pig macrophages did not induce nitric oxide nor any arginine metabolizing genes in response to LPS. Instead they responded with robust induction of indoleamine 2,3-dioxygenase (IDO) and other enzymes of the tryptophan metabolism pathway such as kynurenine hydroxylase, kynureninase and tryptophan-tRNA synthetase. The tryptophan metabolism pathway has been implicated in sepsis in man and the absence of this pathway in the mouse may be one of the reasons why an adequate rodent model of sepsis has not been developed. The IDO inhibitor 1-methyl-tryptophan (1-MT) has been used to treat mouse macrophages where it had a protective effect after LPS administration. Similar experiments on pig macrophages did not show the same protective effect and induction of key immune genes was increased after treatment with 1-MT suggesting IDO is involved in feedback control of the immune system. With the completion of the genome sequence and the characterisation of many key regulators and markers, the pig has emerged as a tractable model of human innate immunity and disease that should address the limited predictive value of rodents in preclinical studies. This project aimed to address the gap in our knowledge of the control of innate immunity in the pig and provided further evidence that the pig can function as an ideal model to study innate immunity

    A gene expression atlas of the domestic pig

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This work describes the first genome-wide analysis of the transcriptional landscape of the pig. A new porcine Affymetrix expression array was designed in order to provide comprehensive coverage of the known pig transcriptome. The new array was used to generate a genome-wide expression atlas of pig tissues derived from 62 tissue/cell types. These data were subjected to network correlation analysis and clustering.</p> <p>Results</p> <p>The analysis presented here provides a detailed functional clustering of the pig transcriptome where transcripts are grouped according to their expression pattern, so one can infer the function of an uncharacterized gene from the company it keeps and the locations in which it is expressed. We describe the overall transcriptional signatures present in the tissue atlas, where possible assigning those signatures to specific cell populations or pathways. In particular, we discuss the expression signatures associated with the gastrointestinal tract, an organ that was sampled at 15 sites along its length and whose biology in the pig is similar to human. We identify sets of genes that define specialized cellular compartments and region-specific digestive functions. Finally, we performed a network analysis of the transcription factors expressed in the gastrointestinal tract and demonstrate how they sub-divide into functional groups that may control cellular gastrointestinal development.</p> <p>Conclusions</p> <p>As an important livestock animal with a physiology that is more similar than mouse to man, we provide a major new resource for understanding gene expression with respect to the known physiology of mammalian tissues and cells. The data and analyses are available on the websites <url>http://biogps.org and http://www.macrophages.com/pig-atlas</url>.</p

    The Constrained Maximal Expression Level Owing to Haploidy Shapes Gene Content on the Mammalian X Chromosome.

    Get PDF
    X chromosomes are unusual in many regards, not least of which is their nonrandom gene content. The causes of this bias are commonly discussed in the context of sexual antagonism and the avoidance of activity in the male germline. Here, we examine the notion that, at least in some taxa, functionally biased gene content may more profoundly be shaped by limits imposed on gene expression owing to haploid expression of the X chromosome. Notably, if the X, as in primates, is transcribed at rates comparable to the ancestral rate (per promoter) prior to the X chromosome formation, then the X is not a tolerable environment for genes with very high maximal net levels of expression, owing to transcriptional traffic jams. We test this hypothesis using The Encyclopedia of DNA Elements (ENCODE) and data from the Functional Annotation of the Mammalian Genome (FANTOM5) project. As predicted, the maximal expression of human X-linked genes is much lower than that of genes on autosomes: on average, maximal expression is three times lower on the X chromosome than on autosomes. Similarly, autosome-to-X retroposition events are associated with lower maximal expression of retrogenes on the X than seen for X-to-autosome retrogenes on autosomes. Also as expected, X-linked genes have a lesser degree of increase in gene expression than autosomal ones (compared to the human/Chimpanzee common ancestor) if highly expressed, but not if lowly expressed. The traffic jam model also explains the known lower breadth of expression for genes on the X (and the Z of birds), as genes with broad expression are, on average, those with high maximal expression. As then further predicted, highly expressed tissue-specific genes are also rare on the X and broadly expressed genes on the X tend to be lowly expressed, both indicating that the trend is shaped by the maximal expression level not the breadth of expression per se. Importantly, a limit to the maximal expression level explains biased tissue of expression profiles of X-linked genes. Tissues whose tissue-specific genes are very highly expressed (e.g., secretory tissues, tissues abundant in structural proteins) are also tissues in which gene expression is relatively rare on the X chromosome. These trends cannot be fully accounted for in terms of alternative models of biased expression. In conclusion, the notion that it is hard for genes on the Therian X to be highly expressed, owing to transcriptional traffic jams, provides a simple yet robustly supported rationale of many peculiar features of X's gene content, gene expression, and evolution

    Multiorgan MRI findings after hospitalisation with COVID-19 in the UK (C-MORE): a prospective, multicentre, observational cohort study

    Get PDF
    Introduction: The multiorgan impact of moderate to severe coronavirus infections in the post-acute phase is still poorly understood. We aimed to evaluate the excess burden of multiorgan abnormalities after hospitalisation with COVID-19, evaluate their determinants, and explore associations with patient-related outcome measures. Methods: In a prospective, UK-wide, multicentre MRI follow-up study (C-MORE), adults (aged ≥18 years) discharged from hospital following COVID-19 who were included in Tier 2 of the Post-hospitalisation COVID-19 study (PHOSP-COVID) and contemporary controls with no evidence of previous COVID-19 (SARS-CoV-2 nucleocapsid antibody negative) underwent multiorgan MRI (lungs, heart, brain, liver, and kidneys) with quantitative and qualitative assessment of images and clinical adjudication when relevant. Individuals with end-stage renal failure or contraindications to MRI were excluded. Participants also underwent detailed recording of symptoms, and physiological and biochemical tests. The primary outcome was the excess burden of multiorgan abnormalities (two or more organs) relative to controls, with further adjustments for potential confounders. The C-MORE study is ongoing and is registered with ClinicalTrials.gov, NCT04510025. Findings: Of 2710 participants in Tier 2 of PHOSP-COVID, 531 were recruited across 13 UK-wide C-MORE sites. After exclusions, 259 C-MORE patients (mean age 57 years [SD 12]; 158 [61%] male and 101 [39%] female) who were discharged from hospital with PCR-confirmed or clinically diagnosed COVID-19 between March 1, 2020, and Nov 1, 2021, and 52 non-COVID-19 controls from the community (mean age 49 years [SD 14]; 30 [58%] male and 22 [42%] female) were included in the analysis. Patients were assessed at a median of 5·0 months (IQR 4·2–6·3) after hospital discharge. Compared with non-COVID-19 controls, patients were older, living with more obesity, and had more comorbidities. Multiorgan abnormalities on MRI were more frequent in patients than in controls (157 [61%] of 259 vs 14 [27%] of 52; p&lt;0·0001) and independently associated with COVID-19 status (odds ratio [OR] 2·9 [95% CI 1·5–5·8]; padjusted=0·0023) after adjusting for relevant confounders. Compared with controls, patients were more likely to have MRI evidence of lung abnormalities (p=0·0001; parenchymal abnormalities), brain abnormalities (p&lt;0·0001; more white matter hyperintensities and regional brain volume reduction), and kidney abnormalities (p=0·014; lower medullary T1 and loss of corticomedullary differentiation), whereas cardiac and liver MRI abnormalities were similar between patients and controls. Patients with multiorgan abnormalities were older (difference in mean age 7 years [95% CI 4–10]; mean age of 59·8 years [SD 11·7] with multiorgan abnormalities vs mean age of 52·8 years [11·9] without multiorgan abnormalities; p&lt;0·0001), more likely to have three or more comorbidities (OR 2·47 [1·32–4·82]; padjusted=0·0059), and more likely to have a more severe acute infection (acute CRP &gt;5mg/L, OR 3·55 [1·23–11·88]; padjusted=0·025) than those without multiorgan abnormalities. Presence of lung MRI abnormalities was associated with a two-fold higher risk of chest tightness, and multiorgan MRI abnormalities were associated with severe and very severe persistent physical and mental health impairment (PHOSP-COVID symptom clusters) after hospitalisation. Interpretation: After hospitalisation for COVID-19, people are at risk of multiorgan abnormalities in the medium term. Our findings emphasise the need for proactive multidisciplinary care pathways, with the potential for imaging to guide surveillance frequency and therapeutic stratification

    Manipulation of T cell function and conditional gene targeting in T cells

    Full text link
    Cre-Lox recombination is known as a site-specific recombinase technology, and is widely used to carry out modification at specific sites in the DNA of cells. The system consists of an enzyme, Cre recombinase, that recombines a pair of short target sequences, the lox sites. The Cre-Lox system can be used to activate or repress a gene depending on the placement of the lox sites. Placing the Cre recombinase under the control of a cell-specific promoter allows expression only in specific cells or cellular subsets, thus providing a powerful tool for analysis of gene function at specific developmental or physiological niches. Nowadays almost every aspect of T cell biology can be approached by a specific Cre model. This powerful tool allows scientists to overcome the limitations of gene-deficient animals and target a gene of interest specifically in T cell or T cell subsets by appropriate placement of the lox sites. Here we describe the main Cre lines that enable gene targeting in T helper cells or CD4 T cell subsets, and the most common methods of assessing the recombination efficiency

    Comparative analysis of monocyte subsets in the pig

    No full text
    Human and mouse monocyte can be divided into two different subpopulations based on surface marker expression: CD14/16 and Ly6C/CX3CR1, respectively. Monocyte subpopulations in the pig were identified based on reciprocal expression of CD14 and the scavenger receptor CD163. The two populations, CD14hi-CD163low and CD14low-CD163hi, show approximately equal abundance in the steady-state. Culture of pig PBMCs in CSF1 indicates that the two populations are a maturation series controlled by this growth factor. Gene expression in pig monocyte subpopulations was profiled using the newly developed and annotated pig whole genome snowball microarray. Previous studies have suggested a functional equivalence between human and mouse subsets, but certain genes such as CD36, CLEC4E, or TREM-1 showed human-specific expression. The same genes were expressed selectively in pig monocyte subsets. However, the profiles suggest that the pig CD14 low-CD163high cells are actually equivalent to intermediate human monocytes, and there is no CD14- CD16+ "nonclassical" population. The results are discussed in terms of the relevance of the pig as a model for understanding human monocyte function. Copyrigh

    The impact of breed and tissue compartment on the response of pig macrophages to lipopolysaccharide

    Get PDF
    Background: The draft genome of the domestic pig (Sus scrofa) has recently been published permitting refined analysis of the transcriptome. Pig breeds have been reported to differ in their resistance to infectious disease. In this study we examine whether there are corresponding differences in gene expression in innate immune cells. Results: We demonstrate that macrophages can be harvested from three different compartments of the pig (lungs, blood and bone-marrow), cryopreserved and subsequently recovered and differentiated in CSF-1. We have performed surface marker analysis and gene expression profiling on macrophages from these compartments, comparing twenty-five animals from five different breeds and their response to lipopolysaccharide. The results provide a clear distinction between alveolar macrophages (AM) and monocyte-derived (MDM) and bone-marrow-derived macrophages (BMDM). In particular, the lung macrophages express the growth factor, FLT1 and its ligand, VEGFA at high levels, suggesting a distinct pathway of growth regulation. Relatively few genes showed breed-specific differential expression, notably CXCR2 and CD302 in alveolar macrophages. In contrast, there was substantial inter-individual variation between pigs within breeds, mostly affecting genes annotated as being involved in immune responses.Conclusions: Pig macrophages more closely resemble human, than mouse, in their set of macrophage-expressed and LPS-inducible genes. Future research will address whether inter-individual variation in macrophage gene expression is heritable, and might form the basis for selective breeding for disease resistance

    Pig bone marrow-derived macrophages resemble human macrophages in their response to bacterial lipopolysaccharide

    Get PDF
    Mouse bone marrow-derived macrophages (BMDM) grown in M-CSF (CSF-1) have been used widely in studies of macrophage biology and the response to TLR agonists.We investigated whether similar cells could be derived from the domestic pig using human rCSF-1 and whether porcine macrophages might represent a better model of human macrophage biology. Cultivation of pig bone marrow cells for 5-7 d in presence of human rCSF-1 generated a pure population of BMDM that expressed the usual macrophage markers (CD14, CD16, and CD172a), were potent phagocytic cells, and produced TNF in response to LPS. Pig BMDM could be generated from bone marrow cells that had been stored frozen and thawed so that multiple experiments can be performed on samples from a single animal. Gene expression in pig BMDM from outbred animals responding to LPS was profiled using Affymetrix microarrays. The temporal cascade of inducible and repressible genes more closely resembled the known responses of human than mouse macrophages, sharing with humans the regulation of genes involved in tryptophan metabolism (IDO, KYN), lymphoattractant chemokines (CCL20, CXCL9, CXCL11, CXCL13), and the vitamin D3-converting enzyme, Cyp27B1. Conversely, in common with published studies of human macrophages, pig BMDM did not strongly induce genes involved in arginine metabolism, nor did they produce NO. These results establish pig BMDM as an alternative tractable model for the study of macrophage transcriptional control. Copyrigh

    T<sub>reg</sub> cells lacking TR2 are functional.

    No full text
    <p>(A) <i>In vitro</i> suppression assay: sorted conventional CD45.1<sup>+</sup>CD4<sup>+</sup> T cells were stimulated with anti-CD3 (2 µg/ml) and cocultured with sorted WT T<sub>reg</sub> cells or tam-iCD4TR2 T<sub>reg</sub> cells (isolated 14 d p.a.) at various ratios. Thymidine was added for the last 24 h of culture. Analysis was performed after 96 h. Percent suppression as mean ± SD (analysed in two independent experiments). (B) <i>In vitro</i> suppression assay: sorted conventional CD45.1<sup>+</sup>CD4<sup>+</sup> T cells were labelled with CFSE, stimulated with anti-CD3 (2 µg/ml), and cocultured with sorted wt T<sub>reg</sub> cells or tam-iCD4TR2 T<sub>reg</sub> cells (isolated 14 d p.a.) at various ratios. FACS analysis was performed after 96 h. These data are representative results of two independent experiments. (C and D) <i>In vivo</i> suppression assay: Development of colitis in Rag1<sup>−/−</sup> mice after transfer of conventional CD4<sup>+</sup> T cells alone or in combination with tam-iCD4TR2 (mice treated for 5 d, cells isolated 1 wk p.a.) T<sub>reg</sub> cells or iCD4TR2 T<sub>reg</sub> cells. Change in body weight after 8 wk posttransfer (mean, 3 mice per group, representative data of two independent experiments). (D) Representative micrographs of H&E-stained small intestine sections from <i>in vivo</i> suppression experiments isolated from Rag1<sup>−/−</sup> mice 8 wk after transfer of the indicated cells. Scoring of colitis severity according to <a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.1001674#pbio.1001674-Asseman1" target="_blank">[60]</a>. (E) Criss-cross <i>in vitro</i> suppression assay: sorted conventional tam-iCD4TR2 and WT T cells were cocultured with sorted tam-iCD4TR2 and wt T<sub>reg</sub> cells at various ratios. Analysis was performed after 96 h (representative data of two independent experiments). (F) Development of colitis in Rag1<sup>−/−</sup> mice after adoptive transfer of conventional tam-iCD4TR2 and wt T cells alone or in combination with tam-iCD4TR2 T<sub>reg</sub> cells. Change in body weight after 8 wk posttransfer (mean ± SEM, 3 mice per group, representative data of two independent experiments).</p

    Increased proliferation of T<sub>em</sub> cells upon removal of TR2.

    No full text
    <p>(A) Absolute number of CD4<sup>+</sup> T cells in spleens of tam-iCD4TR2 and control mice 1, 2, 4, and 6 wk p.a. Mice were treated with tamoxifen for 5 consecutive days (mean ± SEM, 9 mice per group, analysed in three independent experiments). (B) Percentage of T<sub>em</sub>, cells in the spleen of tam-iCD4TR2, and control mice at indicated time points (percentage out of CD4<sup>+</sup> T cell, mean ± SEM, 9 mice per group, analysed in three independent experiments). (C) The percentages of BrdU<sup>+</sup> T<sub>em</sub> cells isolated from spleens of tam-iCD4TR2 and control mice, gated on CD4<sup>+</sup> T cells (mean ± SEM, 9 mice per group, analysed in three independent experiments). (D) The percentage of T<sub>n</sub> and T<sub>em</sub> cells in the spleen of thymectomised tam-iCD4TR2 and control mice at indicated time points (mean ± SEM, 9 mice per group, analysed in two independent experiments). (E) Rag1<sup>−/−</sup> mice were reconstituted with T-cell–depleted bone marrow from WT CD45.1<sup>+</sup> and CD45.2<sup>+</sup> iCD4TR2 or TR2 mice in 1∶1 ratio and treated with tamoxifen for 5 consecutive days 5 wk postreconstitution. Scheme of the experimental setup. (F) The percentage of CD4<sup>+</sup> T<sub>em</sub> of total CD4<sup>+</sup> T cells from LNs are shown (left panel) and the percentage of BrdU<sup>+</sup> T<sub>em</sub> cells isolated from LNs (right panel) (mean ± SEM, 10 mice per group, analysed in three independent experiments). (G) Flow cytometric analysis of the expression of IFN-γ and IL-4 by splenic CD4<sup>+</sup> T cells from tam-iCD4TR2 and control mice 2 wk p.a. (representative data of two independent experiments). Quantitative RT-PCR of T-bet mRNA in sorted splenic CD4<sup>+</sup> T cell. These data are representative results of two independent experiments (right panel).</p
    corecore