36 research outputs found

    Native interface of the SAM domain polymer of TEL

    Get PDF
    BACKGROUND: TEL is a transcriptional repressor containing a SAM domain that forms a helical polymer. In a number of hematologic malignancies, chromosomal translocations lead to aberrant fusions of TEL-SAM to a variety of other proteins, including many tyrosine kinases. TEL-SAM polymerization results in constitutive activation of the tyrosine kinase domains to which it becomes fused, leading to cell transformation. Thus, inhibitors of TEL-SAM self-association could abrogate transformation in these cells. In previous work, we determined the structure of a mutant TEL-SAM polymer bearing a Val to Glu substitution in center of the subunit interface. It remained unclear how much the mutation affected the architecture of the polymer, however. RESULTS: Here we determine the structure of the native polymer interface. To accomplish this goal, we introduced mutations that block polymer extension, producing a heterodimer with a wild-type interface. We find that the structure of the wild-type polymer interface is quite similar to the mutant structure determined previously. With the structure of the native interface, it is possible to evaluate the potential for developing therapeutic inhibitors of the interaction. We find that the interacting surfaces of the protein are relatively flat, containing no obvious pockets for the design of small molecule inhibitors. CONCLUSION: Our results confirm the architecture of the TEL-SAM polymer proposed previously based on a mutant structure. The fact that the interface contains no obvious potential binding pockets suggests that it may be difficult to find small molecule inhibitors to treat malignancies in this way

    Structures of Ruthenium-modified Pseudomonas aeruginosa Azurin and [Ru(2,2’-bipyridine)_2(imidazole)_2)]SO_4•10H_2O

    Get PDF
    The crystal structure of Ru(2,2'-bipyridine)_2(imidazole)(His83)azurin (RuAz) has been determined to 2.3 Å ¬resolution by X-ray crystallography. The spectroscopic and thermodynamic properties of both the native protein and [Ru(2,2'-bipyridine)_2(imidazole)_2]^(2+) are maintained in the modified protein. Dark-green RuAz crystals grown from PEG 4000, LiNO_3, CuCl_2 and Tris buffer are monoclinic, belong to the space group C2 and have cell parameters a = 100.6, b = 35.4, c = 74.7 Å and β = 106.5°. In addition, [Ru(2,2'-bipyridine)_2(imidazole)_2]SO_4•10H_2O was synthesized, crystallized and structurally characterized by X-ray crystallography. Red-brown crystals of this complex are monoclinic, space group P2_1/n, unit-cell parameters a = 13.230 (2), b = 18.197 (4), c = 16.126 (4) Å, β = 108.65 (2)°. Stereochemical parameters for the refinement of Ru(2,2'-bipyridine)_2(imidazole)(His83) were taken from the atomic coordinates of [Ru(2,2'-bipyridine)_2(imidazole)_2]^(2+). The structure of RuAz confirms that His83 is the only site of chemical modification and that the native azurin structure is not perturbed significantly by the ruthenium label

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundDisorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.MethodsWe estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.FindingsGlobally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.InterpretationAs the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed

    Evaluation of appendicitis risk prediction models in adults with suspected appendicitis

    Get PDF
    Background Appendicitis is the most common general surgical emergency worldwide, but its diagnosis remains challenging. The aim of this study was to determine whether existing risk prediction models can reliably identify patients presenting to hospital in the UK with acute right iliac fossa (RIF) pain who are at low risk of appendicitis. Methods A systematic search was completed to identify all existing appendicitis risk prediction models. Models were validated using UK data from an international prospective cohort study that captured consecutive patients aged 16–45 years presenting to hospital with acute RIF in March to June 2017. The main outcome was best achievable model specificity (proportion of patients who did not have appendicitis correctly classified as low risk) whilst maintaining a failure rate below 5 per cent (proportion of patients identified as low risk who actually had appendicitis). Results Some 5345 patients across 154 UK hospitals were identified, of which two‐thirds (3613 of 5345, 67·6 per cent) were women. Women were more than twice as likely to undergo surgery with removal of a histologically normal appendix (272 of 964, 28·2 per cent) than men (120 of 993, 12·1 per cent) (relative risk 2·33, 95 per cent c.i. 1·92 to 2·84; P < 0·001). Of 15 validated risk prediction models, the Adult Appendicitis Score performed best (cut‐off score 8 or less, specificity 63·1 per cent, failure rate 3·7 per cent). The Appendicitis Inflammatory Response Score performed best for men (cut‐off score 2 or less, specificity 24·7 per cent, failure rate 2·4 per cent). Conclusion Women in the UK had a disproportionate risk of admission without surgical intervention and had high rates of normal appendicectomy. Risk prediction models to support shared decision‐making by identifying adults in the UK at low risk of appendicitis were identified

    Diversity Does Make a Difference: Fibroblast Growth Factor-Heparin Interactions

    No full text
    Fibroblast growth factors (FGFs) are members of a protein family with a broad range of biological activities. The best characterized FGFs interact with two distinct extracellular receptors — a transmembrane tyrosine kinase FGF receptor (FGFR) and a heparan sulfate-related proteoglycan of the extracellular matrix. These components form a FGF—FGFR—proteoglycan complex that activates the FGF-mediated signal transduction process through FGFR dimerization. Recent crystal structure determinations of FGF—heparin complexes have provided insights into both the interactions between these components and the role of heparin-like proteoglycans in FGF function. Future advances in this field will benefit enormously from an ability to specifically prepare homogenous heparin-based oligosaccharides of defined sequence for use in biochemical and structural studies of FGF and many other systems

    Symmetry based assembly of a 2 dimensional protein lattice

    No full text
    <div><p>The design of proteins that self-assemble into higher order architectures is of great interest due to their potential application in nanotechnology. Specifically, the self-assembly of proteins into ordered lattices is of special interest to the field of structural biology. Here we designed a 2 dimensional (2D) protein lattice using a fusion of a tandem repeat of three TelSAM domains (TTT) to the Ferric uptake regulator (FUR) domain. We determined the structure of the designed (TTT-FUR) fusion protein to 2.3 Å by X-ray crystallographic methods. In agreement with the design, a 2D lattice composed of TelSAM fibers interdigitated by the FUR domain was observed. As expected, the fusion of a tandem repeat of three TelSAM domains formed 2<sub>1</sub> screw axis, and the self-assembly of the ordered oligomer was under pH control. We demonstrated that the fusion of TTT to a domain having a 2-fold symmetry, such as the FUR domain, can produce an ordered 2D lattice. The TTT-FUR system combines features from the rotational symmetry matching approach with the oligomer driven crystallization method. This TTT-FUR fusion was amenable to X-ray crystallographic methods, and is a promising crystallization chaperone.</p></div

    Data from: Predicting allosteric mutants that increase activity of a major antibiotic resistance enzyme

    No full text
    The CTX-M family of beta lactamases mediate broad-spectrum antibiotic resistance and present in the majority of drug-resistant gram-negative bacteria infections worldwide. Allosteric mutations that increase catalytic rates of these drug resistance enzymes have been identified in clinical isolates but are challenging to predict prospectively. We have used molecular dynamics simulations to predict allosteric mutants increasing CTX-M9 drug resistance, experimentally testing top mutants using multiple antibiotics. Purified enzymes show an increase in catalytic rate and efficiency, while mutant crystal structures show no detectable changes from wild-type CTX-M9. We hypothesize that increased drug resistance results from changes in the conformational ensemble of an acyl intermediate in hydrolysis. Machine-learning analyses on top-scoring mutants identify changes to the binding-pocket conformational ensemble by which these allosteric mutations transmit their effect. These findings show how molecular simulation can predict how allosteric mutations alter active-site conformational equilibria to increase catalytic rates and thus resistance against common clinically used antibiotics

    Formaldehyde Ferredoxin Oxidoreductase from Pyrococcus furiosus: The 1.85 Å Resolution Crystal Structure and its Mechanistic Implications

    No full text
    Crystal structures of formaldehyde ferredoxin oxidoreductase (FOR), a tungstopterin-containing protein from the hyperthermophilic archaeon Pyrococcus furiosus, have been determined in the native state and as a complex with the inhibitor glutarate at 1.85 Å and 2.4 Å resolution, respectively. The native structure was solved by molecular replacement using the structure of the homologous P. furiosus aldehyde ferredoxin oxidoreductase (AOR) as the initial model. Residues are identified in FOR that may be involved in either the catalytic mechanism or in determining substrate specificity. The binding site on FOR for the physiological electron acceptor, P. furiosus ferredoxin (Fd), has been established from an FOR-Fd cocrystal structure. Based on the arrangement of redox centers in this structure, an electron transfer pathway is proposed that begins at the tungsten center, leads to the (4Fe:4S) cluster of FOR via one of the two pterins that coordinate the tungsten, and ends at the (4Fe:4S) cluster of ferredoxin. This pathway includes two residues that coordinate the (4Fe:4S) clusters, Cys287 of FOR and Asp14 of ferredoxin. Similarities in the active site structures between FOR and the unrelated molybdoenzyme aldehyde oxidoreductase from Desulfovibrio gigas suggest that both enzymes utilize a common mechanism for aldehyde oxidation

    The observed 2D crystal packing.

    No full text
    <p>One set of TTT domains are shown in red shades, and the second set is shown in blue shades. The n-FUR domains are shown in green and yellow. (A) Top-down view of the TelSAM oligomers. (B) Side view of the TelSAM oligomers. Within the 2D lattice, the interactions between neighboring TelSAM fibers are entirely mediated by the n-FUR domains. Additional figures for the crystal packing are included in the supplemental materials.</p
    corecore